Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and Simulated Annealing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Preprocessing
2.2. Bayesian Classifier
2.2.1. Statistical Analysis
2.2.2. Model Architecture
2.3. Feature Selection by the Simulated Annealing Algorithm
Algorithm 1: Feature selection algorithm based on simulated annealing |
Input: Training dataset Output: Optimal Feature Combination = best_features |
1. T = 0.5979 2. Tmin = 0.0232 3. Lk = 30 4. Initial solution is declared 5. C0 = the function cost value of initial solution 6. i = 1 %% number of iterations 7. n = 11 %% n = dimensions 8. Cp = 0 %% function cost value of current solution 9. do while (T > Tmin): 10. Generate a n-dimension random solution array 11. Training Bayesian classifier 12. Calculate the Bayesian classifier’s AUC for the train, test and validation sets. 13. if ((sensibility or specificity) < 0.6): 14. Cost_function [i] = 0 15. else: 16. Cost_function [i] = mean (AUC_train, AUC_test, AUC_validation) − std (AUC_train, AUC_test, AUC_validation) 17. Cp = max (Cost_function) 18. DeltaE = Cp − C0 19. if (DeltaE >= 0): 20. C0 = Cp 21. features [i] = last n-dimension random solution array 22. elseif exp(DeltaE/(T)) > rand(1,1): 23. C0 = Cp 24. features [i] = last n-dimension random solution array 25. k = k + 1 26. T = T *× 0.82 27. Lk = Lk + Lk × (1 − exp(−1)) 28. best_features [n] = features (find (max (Cost_function)) 29. n = n + 1 30. Restart pseudocode |
2.4. Validation Strategies and Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CoP Index | Total | Non-Fall Risk | Fall Risk | KS Test | MD Test | HL Test | AUC (95% CI) |
---|---|---|---|---|---|---|---|
n = 181 | n = 94 | n = 87 | p-Value | p-Value | p-Value | ||
Mean distance [mm] | 5.16 ± 2.45 | 4.95 ± 2.02 | 5.39 ± 2.83 | 0.000 * | 0.322 | 0.828 | 0.542 (0.457–0.627) |
Mean distance-ML [mm] | 4.00 ± 2.15 | 3.84 ± 1.83 | 4.17 ± 2.44 | 0.000 * | 0.339 | 0.515 | 0.541 (0.456–0.625) |
Mean distance-AP [mm] | 2.46 ± 1.18 | 2.35 ± 0.98 | 2.57 ± 1.36 | 0.000 * | 0.430 | 0.824 | 0.534 (0.449–0.618) |
RMS distance [mm] | 5.96 ± 2.83 | 5.71 ± 2.29 | 6.23 ± 3.31 | 0.000 * | 0.318 | 0.503 | 0.543 (0.458–0.627) |
RMS distance-ML mm] | 5.00 ± 2.65 | 4.78 ± 2.16 | 5.24 ± 3.09 | 0.000 * | 0.303 | 0.43 | 0.544 (0.459–0.628) |
RMS distance-AP [mm] | 3.08 ± 1.42 | 2.97 ± 1.24 | 3.2 ± 1.59 | 0.000 * | 0.448 | 0.448 | 0.532 (0.447–0.617) |
Total Length [mm] | 713.92 ± 333.48 | 694.21 ± 269.03 | 735.22 ± 391.93 | 0.000 * | 0.607 | 0.116 | 0.477 (0.391–0.564) |
Total length ML [mm] | 563.81 ± 272.52 | 536.17 ± 217.65 | 593.67 ± 320.13 | 0.000 * | 0.943 | 0.015 * | 0.503 (0.414–0.591) |
Total length AP [mm] | 324.71 ± 158.24 | 330.34 ± 141.11 | 318.62 ± 175.51 | 0.000 * | 0.161 | 0.026 * | 0.439 (0.355–0.524) |
Mean velocity [mm/s] | 11.89 ± 5.55 | 11.57 ± 4.48 | 12.25 ± 6.53 | 0.000 * | 0.607 | 0.116 | 0.477 (0.391–0.564) |
Mean velocity-ML [mm/s] | 9.39 ± 4.54 | 8.93 ± 3.62 | 9.89 ± 5.33 | 0.000 * | 0.943 | 0.015 * | 0.503 (0.414–0.591) |
Mean velocity-AP [mm/s] | 5.41 ± 2.63 | 5.5 ± 2.35 | 5.31 ± 2.92 | 0.000 * | 0.161 | 0.026 * | 0.439 (0.355–0.524) |
Standard deviation of RD [mm] | 2.94 ± 1.47 | 2.82 ± 1.13 | 3.08 ± 1.77 | 0.000 * | 0.267 | 0.465 | 0.547 (0.463–0.632) |
95% conf. Circle area [mm2] | 38.79 ± 55.95 | 33.49 ± 31.05 | 44.52 ± 73.8 | 0.000 * | 0.276 | 0.586 | 0.547 (0.462–0.631) |
Covariance ML [mm2] | 0.01 ± 0.87 | 0.11 ± 0.84 | -0.09 ± 0.9 | 0.000 * | 0.214 | 0.848 | 0.446 (0.362–0.53) |
95% conf. Ellipse area [mm2] | 31.48 ± 37.62 | 27.33 ± 23.57 | 35.97 ± 48.19 | 0.000 * | 0.214 | 0.15 | 0.553 (0.468–0.638) |
Sway area [mm2/s] | 2.01 ± 2.35 | 1.78 ± 1.46 | 2.26 ± 3.02 | 0.000 * | 0.619 | 0.46 | 0.521 (0.435–0.607) |
Mean frequency [Hz] | 3.90 ± 1.43 | 3.97 ± 1.37 | 3.82 ± 1.51 | 0.000 * | 0.181 | 0.299 | 0.442 (0.357–0.527) |
Mean frequency-ML [Hz] | 4.54 ± 1.81 | 4.55 ± 1.75 | 4.53 ± 1.89 | 0.000 * | 0.718 | 0.597 | 0.484 (0.399–0.569) |
Mean frequency-AP [Hz] | 4.19 ± 1.70 | 4.39 ± 1.72 | 3.96 ± 1.67 | 0.000 * | 0.079 | 0.427 | 0.424 (0.34–0.508) |
Fractal dimension-CC [-] | 17.04 ± 1.18 | 17.12 ± 1.15 | 16.95 ± 1.22 | 0.027 * | 0.205 | 0.028 * | 0.445 (0.36–0.53) |
Fractal dimension-CE [-] | 17.29 ± 1.13 | 17.38 ± 1.05 | 17.2 ± 1.21 | 0.025 * | 0.092 | 0.217 | 0.427 (0.342–0.512) |
Range [mm] | 28.50 ± 13.39 | 26.97 ± 9.75 | 30.15 ± 16.34 | 0.000 * | 0.146 | 0.276 | 0.562 (0.478–0.647) |
Range-ML [mm] | 27.29 ± 13.28 | 25.66 ± 9.35 | 29.06 ± 16.39 | 0.000 * | 0.119 | 0.029 * | 0.567 (0.482–0.651) |
Range-AP [mm] | 16.82 ± 7.23 | 16.51 ± 6.89 | 17.15 ± 7.61 | 0.000 * | 0.723 | 0.248 | 0.515 (0.43–0.6) |
Total power-RD [mm2/Hz] | 32.63 ± 56.53 | 25.7 ± 18.25 | 40.12 ± 78.86 | 0.000 * | 0.097 | 0.908 | 0.571 (0.487–0.655) |
50% power frequency-RD [Hz] | 3.21 ± 1.86 | 3.45 ± 1.88 | 2.94 ± 1.8 | 0.000 * | 0.023 * | 0.78 | 0.402 (0.319–0.485) |
95% power frequency-RD [Hz] | 14.10 ± 4.05 | 14.61 ± 3.75 | 13.54 ± 4.29 | 0.002 * | 0.032 * | 0.044 * | 0.407 (0.323–0.492) |
Total power-AP [mm2/Hz] | 22.42 ± 19.49 | 21.6 ± 18.89 | 23.31 ± 20.19 | 0.000 * | 0.727 | 0.452 | 0.515 (0.43–0.599) |
50% power frequency-AP [Hz] | 2.65 ± 1.96 | 2.91 ± 2.09 | 2.38 ± 1.77 | 0.000 * | 0.039 * | 0.077 | 0.411 (0.328–0.494) |
95% power frequency-AP [Hz] | 9.82 ± 2.50 | 9.91 ± 2.44 | 9.73 ± 2.57 | 0.200 | 0.639 | 0.191 | 0.48 (0.395–0.565) |
Total power-ML [mm2/Hz] | 63.14 ± 114.63 | 45.52 ± 32.64 | 82.17 ± 160.14 | 0.000 * | 0.048 * | 0.996 | 0.585 (0.501–0.668) |
50% power frequency-ML [Hz] | 2.61 ± 1.80 | 2.8 ± 1.84 | 2.41 ± 1.74 | 0.000 * | 0.056 | 0.425 | 0.417 (0.334–0.501) |
95% power frequency-ML [Hz] | 10.99 ± 2.76 | 11.38 ± 2.57 | 10.57 ± 2.9 | 0.200 | 0.048 * | 0.24 | 0.442 (0.357–0.526) |
Centroidal frequency-RD [Hz] | 7.08 ± 2.04 | 7.37 ± 1.94 | 6.75 ± 2.11 | 0.028 * | 0.017 * | 0.172 | 0.396 (0.313–0.48) |
Frequency dispersion-RD [-] | 7.32 ± 0.61 | 7.27 ± 0.65 | 7.38 ± 0.56 | 0.005 * | 0.188 | 0.628 | 0.556 (0.472–0.64) |
Centroidal frequency-AP [Hz] | 5.41 ± 1.57 | 5.61 ± 1.6 | 5.2 ± 1.51 | 0.013 * | 0.090 | 0.054 | 0.427 (0.343–0.51) |
Frequency dispersion-AP [-] | 7.27 ± 1.06 | 7.13 ± 1.09 | 7.42 ± 1.01 | 0.000 * | 0.034 * | 0.400 | 0.591 (0.508–0.674) |
Centroidal frequency-ML [Hz] | 5.87 ± 1.54 | 6.12 ± 1.45 | 5.6 ± 1.6 | 0.200 | 0.022 * | 0.081 | 0.418 (0.334–0.502) |
Frequency dispersion-ML [-] | 7.39 ± 0.89 | 7.35 ± 0.89 | 7.44 ± 0.89 | 0.000 * | 0.371 | 0.088 | 0.538 (0.453–0.623) |
n | Combination of Optimal Features | Train | Test | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SE | SP | AUC | SE | SP | AUC | SE | SP | AUC | ||
11 | 1, 2, 15, 19, 20, 21, 36, 37, 43, 44, 45 | 0.769 | 0.75 | 0.759 | 0.888 | 0.736 | 0.812 | 0.764 | 0.684 | 0.724 |
12 | 1, 2, 4, 10, 16, 17, 23, 30, 34, 37, 42, 47 | 0.75 | 0.821 | 0.785 | 0.777 | 0.631 | 0.704 | 0.705 | 0.736 | 0.721 |
13 | 1, 4, 5, 16, 17, 18, 22, 29, 30, 37, 42, 44, 47 | 0.865 | 0.75 | 0.807 | 0.833 | 0.631 | 0.732 | 0.823 | 0.736 | 0.78 |
14 | 1, 3, 4, 8, 12, 16, 18, 22, 35, 36, 37, 42, 44, 47 | 0.788 | 0.803 | 0.796 | 0.888 | 0.684 | 0.786 | 0.764 | 0.736 | 0.75 |
15 | 1, 3, 4, 8, 16, 20, 26, 30, 36, 38, 40, 42, 44, 45, 46 | 0.807 | 0.857 | 0.832 | 0.944 | 0.631 | 0.788 | 0.705 | 0.736 | 0.721 |
16 | 1, 2, 4, 6, 7, 12, 13, 16, 17, 20, 22, 27, 32, 38, 42, 43 | 0.846 | 0.803 | 0.824 | 0.722 | 0.736 | 0.729 | 0.705 | 0.789 | 0.747 |
17 | 1, 2, 4, 5, 7, 9, 13, 17, 22, 27, 30, 35, 37, 38, 40, 43, 47 | 0.884 | 0.821 | 0.853 | 0.666 | 0.736 | 0.701 | 0.705 | 0.842 | 0.773 |
18 | 1, 3, 4, 6, 7, 8, 11, 19, 20, 24, 27, 28, 30, 34, 36, 38, 40, 42 | 0.711 | 0.857 | 0.784 | 0.777 | 0.736 | 0.757 | 0.764 | 0.736 | 0.75 |
19 | 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16, 20, 32, 33, 34, 36, 40, 42, 47 | 0.788 | 0.892 | 0.84 | 0.666 | 0.684 | 0.675 | 0.764 | 0.789 | 0.777 |
20 | 1, 3, 4, 6, 7, 10, 11, 14, 15, 18, 20, 22, 24, 31, 34, 35, 37, 42, 44, 47 | 1 | 0.696 | 0.848 | 0.722 | 0.631 | 0.676 | 0.941 | 0.631 | 0.786 |
21 | 1, 2, 4, 5, 6, 11, 14, 15, 16, 20, 21, 22, 23, 24, 35, 36, 37, 39, 40, 41, 45 | 0.826 | 0.75 | 0.788 | 0.777 | 0.631 | 0.704 | 0.647 | 0.736 | 0.691 |
22 | 1, 2, 3, 5, 12, 16, 20, 21, 22, 25, 26, 27, 28, 30, 31, 34, 38, 40, 44, 45, 46, 47 | 0.903 | 0.714 | 0.809 | 0.722 | 0.684 | 0.703 | 0.705 | 0.736 | 0.721 |
23 | 1, 2, 6, 9, 10, 11, 13, 14, 15, 16, 18, 23, 26, 29, 32, 34, 38, 39, 40, 41, 42, 45, 47 | 0.634 | 0.714 | 0.674 | 0.666 | 0.684 | 0.675 | 0.647 | 0.684 | 0.665 |
24 | 1, 2, 4, 5, 6, 7, 12, 14, 15, 16, 20, 21, 22, 23, 28, 31, 35, 36, 37, 38, 42, 43, 44, 46 | 0.884 | 0.91 | 0.897 | 0.666 | 0.736 | 0.701 | 0.705 | 0.789 | 0.747 |
25 | 1, 3, 5, 10, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 32, 35, 36, 38, 41, 42, 44, 45 | 0.826 | 0.839 | 0.833 | 0.722 | 0.789 | 0.755 | 0.647 | 0.736 | 0.691 |
26 | 1, 2, 3, 5, 7, 9, 10, 12, 15, 18, 20, 21, 22, 24, 25, 26, 27, 31, 32, 34, 37, 38, 40, 44, 46, 47 | 0.98 | 0.75 | 0.865 | 0.777 | 0.631 | 0.704 | 0.764 | 0.736 | 0.75 |
27 | 2, 3, 5, 6, 12, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 33, 35, 36, 37, 38, 40, 42, 43, 47 | 0.846 | 0.839 | 0.842 | 0.666 | 0.736 | 0.701 | 0.823 | 0.736 | 0.78 |
28 | 1, 2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 17, 22, 25, 26, 27, 28, 31, 32, 33, 35, 37, 38, 40, 41, 42, 43 | 0.961 | 0.785 | 0.873 | 0.777 | 0.631 | 0.704 | 0.647 | 0.842 | 0.744 |
29 | 1, 3, 4, 5, 6, 7, 9, 13, 14, 15, 16, 20, 23, 24, 25, 26, 27, 30, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45 | 0.923 | 0.91 | 0.916 | 0.722 | 0.684 | 0.703 | 0.647 | 0.894 | 0.77 |
30 | 1, 3, 5, 8, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 35, 36, 37, 38, 41, 42, 43, 46, 47 | 0.923 | 0.803 | 0.863 | 0.833 | 0.631 | 0.732 | 0.647 | 0.842 | 0.744 |
31 | 1, 3, 4, 5, 6, 7, 9, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46 | 0.923 | 0.964 | 0.943 | 0.722 | 0.789 | 0.755 | 0.705 | 0.789 | 0.747 |
32 | 2, 4, 5, 6, 7, 8, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 32, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47 | 1 | 0.785 | 0.892 | 0.722 | 0.684 | 0.703 | 0.705 | 0.684 | 0.695 |
33 | 1, 3, 4, 5, 6, 7, 10, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 30, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 47 | 0.769 | 0.785 | 0.777 | 0.777 | 0.631 | 0.704 | 0.705 | 0.684 | 0.695 |
34 | 1, 4, 5, 6, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47 | 0.807 | 0.857 | 0.832 | 0.611 | 0.684 | 0.647 | 0.647 | 0.736 | 0.691 |
35 | 1, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47 | 0.865 | 0.821 | 0.843 | 0.722 | 0.684 | 0.703 | 0.647 | 0.736 | 0.691 |
Feature | Label Meaning |
1 | Sex |
2 | Height [cm] |
3 | Weight [kg] |
4 | BMI [kg/m2] |
5 | Age [years] |
6 | Foot length [cm] |
7 | Polypharmacy |
8 | Mean distance [mm] |
9 | Mean distance-ML [mm] |
10 | Mean distance-AP [mm] |
11 | RMS distance [mm] |
12 | RMS distance-ML [mm] |
13 | RMS distance-AP [mm] |
14 | Total Length [mm] |
15 | Total length ML [mm] |
16 | Total length AP [mm] |
17 | Mean velocity [mm/s] |
18 | Mean velocity-ML [mm/s] |
19 | Mean velocity-AP [mm/s] |
20 | Standard deviation of RD [mm] |
21 | 95% conf. circle area [mm2] |
22 | Covariance ML [mm2] |
23 | 95% conf. ellipse area [mm2] |
24 | Sway area [mm2/s] |
25 | Mean frequency [Hz] |
26 | Mean frequency-ML [Hz] |
27 | Mean frequency-AP [Hz] |
28 | Fractal dimension-CC [-] |
29 | Fractal dimension-CE [-] |
30 | Range [mm] |
31 | Range-ML [mm] |
32 | Range-AP [mm] |
33 | Total power-RD [mm2/Hz] |
34 | 50% power frequency-RD [Hz] |
35 | 95% power frequency-RD [Hz] |
36 | Total power-AP [mm2/Hz] |
37 | 50% power frequency-AP [Hz] |
38 | 95% power frequency-AP [Hz] |
39 | Total power-ML [mm2/Hz] |
40 | 50% power frequency-ML [Hz] |
41 | 95% power frequency-ML [Hz] |
42 | Centroidal frequency-RD [Hz] |
43 | Frequency dispersion-RD [-] |
44 | Centroidal frequency-AP [Hz] |
45 | Frequency dispersion-AP [-] |
46 | Centroidal frequency-ML [Hz] |
47 | Frequency dispersion-ML [-] |
Feature | Train | Test | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
SE | SP | AUC | SE | SP | AUC | SE | SP | AUC | |
Sex | 0.903 | 0.303 | 0.603 | 1.000 | 0.210 | 0.605 | 0.941 | 0.368 | 0.654 |
Height [cm] | 0.538 | 0.553 | 0.546 | 0.333 | 0.473 | 0.403 | 0.294 | 0.526 | 0.410 |
Weight [kg] | 0.480 | 0.642 | 0.561 | 0.222 | 0.368 | 0.295 | 0.411 | 0.684 | 0.547 |
BMI [kg/m2] | 0 | 1 | 0.5 | 0 | 1 | 0.5 | 0 | 1 | 0.5 |
Age [years] | 0.250 | 0.821 | 0.535 | 0.388 | 0.789 | 0.589 | 0.235 | 0.894 | 0.565 |
Foot length [cm] | 0.557 | 0.66 | 0.609 | 0.444 | 0.526 | 0.485 | 0.470 | 0.789 | 0.630 |
Polypharmacy | 0.423 | 0.75 | 0.586 | 0.333 | 0.684 | 0.508 | 0.470 | 0.578 | 0.524 |
Mean distance [mm] | 0.230 | 0.821 | 0.526 | 0.222 | 0.842 | 0.532 | 0.058 | 0.789 | 0.424 |
Mean distance-ML [mm] | 0.250 | 0.839 | 0.544 | 0.111 | 0.789 | 0.450 | 0.294 | 0.789 | 0.541 |
Mean distance-AP [mm] | 0.192 | 0.857 | 0.524 | 0.277 | 0.894 | 0.586 | 0.058 | 0.789 | 0.424 |
RMS distance [mm] | 0.250 | 0.839 | 0.544 | 0.222 | 0.842 | 0.532 | 0.058 | 0.789 | 0.424 |
RMS distance-ML [mm] | 0.250 | 0.821 | 0.535 | 0.111 | 0.789 | 0.450 | 0.235 | 0.789 | 0.512 |
RMS distance-AP [mm] | 0.192 | 0.875 | 0.533 | 0.222 | 0.947 | 0.584 | 0.058 | 0.842 | 0.450 |
Total length [mm] | 0.307 | 0.839 | 0.573 | 0.166 | 0.736 | 0.451 | 0.117 | 0.789 | 0.453 |
Total length ML [mm] | 0.423 | 0.839 | 0.631 | 0.166 | 0.736 | 0.451 | 0.176 | 0.842 | 0.509 |
Total length AP [mm] | 0 | 1 | 0.5 | 0 | 1 | 0.5 | 0 | 1 | 0.5 |
Mean velocity [mm/s] | 0.307 | 0.839 | 0.573 | 0.166 | 0.736 | 0.451 | 0.117 | 0.789 | 0.453 |
Mean velocity-ML [mm/s] | 0.423 | 0.839 | 0.631 | 0.166 | 0.736 | 0.451 | 0.176 | 0.842 | 0.509 |
Mean velocity-AP [mm/s] | 0 | 1 | 0.5 | 0 | 1 | 0.5 | 0 | 1 | 0.5 |
Standard deviation of RD [mm] | 0.134 | 0.821 | 0.478 | 0.222 | 0.842 | 0.532 | 0.176 | 0.842 | 0.509 |
95% conf. circle area [mm2] | 0.096 | 0.857 | 0.476 | 0.166 | 0.842 | 0.504 | 0.058 | 0.842 | 0.45 |
Covariance ML [mm2] | 0.269 | 0.803 | 0.536 | 0.222 | 0.789 | 0.505 | 0.294 | 0.789 | 0.541 |
95% conf. ellipse area [mm2] | 0.134 | 0.892 | 0.513 | 0.222 | 0.947 | 0.584 | 0.058 | 0.842 | 0.450 |
Sway area [mm2/s] | 0.230 | 0.857 | 0.543 | 0.111 | 0.947 | 0.529 | 0.176 | 0.894 | 0.535 |
Mean frequency [Hz] | 0.250 | 0.839 | 0.544 | 0.166 | 0.684 | 0.425 | 0.176 | 0.789 | 0.482 |
Mean frequency-ML [Hz] | 0.326 | 0.767 | 0.547 | 0.333 | 0.473 | 0.403 | 0.176 | 0.736 | 0.456 |
Mean frequency-AP [Hz] | 0.365 | 0.660 | 0.513 | 0.388 | 0.789 | 0.589 | 0.529 | 0.631 | 0.58 |
Fractal dimension-CC [-] | 0.057 | 0.982 | 0.519 | 0 | 0.947 | 0.473 | 0 | 0.947 | 0.473 |
Fractal dimension-CE [-] | 0.076 | 0.982 | 0.529 | 0 | 0.947 | 0.473 | 0 | 0.894 | 0.447 |
Range [mm] | 0.230 | 0.821 | 0.526 | 0.166 | 0.789 | 0.478 | 0.294 | 0.842 | 0.568 |
Range-ML [mm] | 0.326 | 0.803 | 0.565 | 0.222 | 0.789 | 0.505 | 0.235 | 0.842 | 0.538 |
Range-AP [mm] | 0.019 | 0.982 | 0.5 | 0 | 1 | 0.5 | 0 | 1 | 0.5 |
Total power-RD [mm2/Hz] | 0.211 | 0.857 | 0.534 | 0.111 | 0.894 | 0.502 | 0.176 | 0.894 | 0.535 |
50% power frequency-RD [Hz] | 0.480 | 0.678 | 0.579 | 0.444 | 0.631 | 0.538 | 0.647 | 0.473 | 0.560 |
95% power frequency-RD [Hz] | 0.250 | 0.892 | 0.571 | 0.333 | 0.894 | 0.614 | 0.470 | 0.842 | 0.656 |
Total power-AP [mm2/Hz] | 0.250 | 0.857 | 0.553 | 0.055 | 0.947 | 0.501 | 0.058 | 0.947 | 0.503 |
50% power frequency-AP [Hz] | 0.576 | 0.553 | 0.565 | 0.611 | 0.315 | 0.463 | 0.764 | 0.526 | 0.645 |
95% power frequency-AP [Hz] | 0.019 | 1 | 0.509 | 0 | 1 | 0.5 | 0 | 0.947 | 0.473 |
Total power-ML [mm2/Hz] | 0.269 | 0.892 | 0.581 | 0.166 | 0.894 | 0.53 | 0.176 | 0.789 | 0.482 |
50% power frequency-ML [Hz] | 0.480 | 0.642 | 0.561 | 0.444 | 0.736 | 0.59 | 0.588 | 0.526 | 0.557 |
95% power frequency-ML [Hz] | 0.365 | 0.714 | 0.539 | 0.333 | 0.631 | 0.482 | 0.411 | 0.684 | 0.547 |
Centroidal frequency-RD [Hz] | 0.384 | 0.732 | 0.558 | 0.444 | 0.684 | 0.564 | 0.705 | 0.789 | 0.747 |
Frequency dispersion-RD [-] | 0.250 | 0.732 | 0.491 | 0.444 | 0.789 | 0.616 | 0.529 | 0.631 | 0.58 |
Centroidal frequency-AP [Hz] | 0.423 | 0.714 | 0.568 | 0.444 | 0.578 | 0.511 | 0.588 | 0.684 | 0.636 |
Frequency dispersion-AP [-] | 0.538 | 0.553 | 0.546 | 0.555 | 0.473 | 0.514 | 0.647 | 0.421 | 0.534 |
Centroidal frequency-ML [Hz] | 0.403 | 0.678 | 0.541 | 0.388 | 0.684 | 0.536 | 0.529 | 0.578 | 0.554 |
Frequency dispersion-ML [-] | 0.192 | 0.875 | 0.533 | 0.222 | 0.947 | 0.584 | 0.294 | 0.789 | 0.541 |
References
- World Health Organization: Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 24 March 2024).
- Talbot, L.A.; Musiol, R.J.; Witham, E.K.; Metter, E.J. Falls in Young, Middle-Aged and Older Community Dwelling Adults: Perceived Cause, Environmental Factors and Injury. BMC Public Health 2005, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Report on Falls Prevention in Older Age; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2008; ISBN 978 92 4 156353 6. [Google Scholar]
- Sun, R.; Sosnoff, J.J. Novel Sensing Technology in Fall Risk Assessment in Older Adults: A Systematic Review. BMC Geriatr. 2018, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Fabre, J.M.; Ellis, R.; Kosma, M.; Wood, R.H. Falls Risk Factors and a Compendium of Falls Risk Screening Instruments. J. Geriatr. Phys. Ther. 2010, 33, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Horak, F.B. The Relevance of Clinical Balance Assessment Tools to Differentiate Balance Deficits. Eur. J. Phys. Rehabil. Med. 2010, 46, 239. [Google Scholar] [PubMed]
- Cho, H.Y.; Heijnen, M.J.H.; Craig, B.A.; Rietdyk, S. Falls in Young Adults: The Effect of Sex, Physical Activity, and Prescription Medications. PLoS ONE 2021, 16, e0250360. [Google Scholar] [CrossRef]
- Gallouj, K.; Altintas, E.; El Haj, M. “I Remember the Fall”: Memory of Falls in Older Adults. Clin. Gerontol. 2023, 46, 695–703. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef]
- Clark, R.A.; Mentiplay, B.F.; Pua, Y.H.; Bower, K.J. Reliability and Validity of the Wii Balance Board for Assessment of Standing Balance: A Systematic Review. Gait Posture 2018, 61, 40–54. [Google Scholar] [CrossRef]
- Hernandez-Laredo, E.; Parra-Rodríguez, L.; Estévez-Pedraza, Á.G.; Martínez-Méndez, R. A Low-Cost, IoT-Connected Force Platform for Fall Risk Assessment in Older Adults. In Proceedings of the XLVI Mexican Conference on Biomedical Engineering; Flores Cuautle, J.D.J.A., Benítez-Mata, B., Salido-Ruiz, R.A., Alonso-Silverio, G.A., Dorantes-Méndez, G., Zúñiga-Aguilar, E., Vélez-Pérez, H.A., et al., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 374–385. [Google Scholar]
- Terekhov, Y. Stabilometry as a Diagnostic Tool in Clinical Medicine. Can. Med. Assoc. J. 1976, 115, 631–633. [Google Scholar]
- Palmieri, R.M.; Ingersoll, C.D.; Stone, M.B.; Krause, B.A. Center-of-Pressure Parameters Used in the Assessment of Postural Control. J. Sport Rehabil. 2002, 11, 51–66. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of Postural Steadiness: Differences between Healthy Young and Elderly Adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Audiffren, J.; Bargiotas, I.; Vayatis, N.; Vidal, P.P.; Ricard, D. A Non Linear Scoring Approach for Evaluating Balance: Classification of Elderly as Fallers and Non-Fallers. PLoS ONE 2016, 11, e0167456. [Google Scholar] [CrossRef] [PubMed]
- Estévez-Pedraza, Á.G.; Parra-Rodríguez, L.; Martínez-Méndez, R.; Portillo-Rodríguez, O.; Ronzón-Hernández, Z. A Novel Model to Quantify Balance Alterations in Older Adults Based on the Center of Pressure (CoP) Measurements with a Cross-Sectional Study. PLoS ONE 2021, 16, e0256129. [Google Scholar] [CrossRef] [PubMed]
- Fino, P.C.; Mojdehi, A.R.; Adjerid, K.; Habibi, M.; Lockhart, T.E.; Ross, S.D. Comparing Postural Stability Entropy Analyses to Differentiate Fallers and Non-Fallers. Ann. Biomed. Eng. 2016, 44, 1636. [Google Scholar] [CrossRef]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Elderly Fall Risk Prediction Using Static Posturography. PLoS ONE 2017, 12, e0172398. [Google Scholar] [CrossRef]
- Kwok, B.C.; Clark, R.A.; Pua, Y.H. Novel Use of the Wii Balance Board to Prospectively Predict Falls in Community-Dwelling Older Adults. Clin. Biomech. Bristol Avon 2015, 30, 481–484. [Google Scholar] [CrossRef]
- Reilly, D.Ó. Feature Selection for the Classification of Fall-Risk in Older Subjects: A Combinational Approach Using Static Force-Plate Measures. bioRxiv 2019. bioRxiv:807818. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Vieira, E.R.; Gil, A.W.O.; Fernandes, K.B.P.; Teixeira, D.C.; Amorim, C.F.; Silva, R.A.D. One-Legged Stance Sway of Older Adults with and without Falls. PLoS ONE 2018, 13, e0203887. [Google Scholar] [CrossRef]
- Silva, J.; Madureira, J.; Tonelo, C.; Baltazar, D.; Silva, C.; Martins, A.; Alcobia, C.; Sousa, I. Comparing Machine Learning Approaches for Fall Risk Assessment. In Proceedings of the 10th International Conference on Bio-Inspired Systems and Signal Processing, Porto, Portugal, 26 July 2024; pp. 223–230. [Google Scholar]
- Liao, F.-Y.; Wu, C.-C.; Wei, Y.-C.; Chou, L.-W.; Chang, K.-M. Analysis of Center of Pressure Signals by Using Decision Tree and Empirical Mode Decomposition to Predict Falls among Older Adults. J. Healthc. Eng. 2021, 2021, 6252445. [Google Scholar] [CrossRef]
- Cuaya-Simbro, G.; Perez-Sanpablo, A.-I.; Morales, E.-F.; Quiñones Uriostegui, I.; Nuñez-Carrera, L. Comparing Machine Learning Methods to Improve Fall Risk Detection in Elderly with Osteoporosis from Balance Data. J. Healthc. Eng. 2021, 2021, 8697805. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Pradhan, C.; Das, H. Performance Evaluation of Different Machine Learning Methods and Deep-Learning Based Convolutional Neural Network for Health Decision Making. In Nature Inspired Computing for Data Science; Rout, M., Rout, J.K., Das, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 201–212. ISBN 978-3-030-33820-6. [Google Scholar]
- Bailly, A.; Blanc, C.; Francis, É.; Guillotin, T.; Jamal, F.; Wakim, B.; Roy, P. Effects of Dataset Size and Interactions on the Prediction Performance of Logistic Regression and Deep Learning Models. Comput. Methods Programs Biomed. 2022, 213, 106504. [Google Scholar] [CrossRef] [PubMed]
- Fatima, R.; Khan, M.H.; Nisar, M.A.; Doniec, R.; Farid, M.S.; Grzegorzek, M. A Systematic Evaluation of Feature Encoding Techniques for Gait Analysis Using Multimodal Sensory Data. Sensors 2024, 24, 75. [Google Scholar] [CrossRef] [PubMed]
- Ruchinskas, R. Clinical Prediction of Falls in the Elderly. Am. J. Phys. Med. Rehabil. 2003, 82, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Piirtola, M.; Era, P. Force Platform Measurements as Predictors of Falls among Older People–A Review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef]
- Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Zawieja, P.; Lefèvre, M.; Vidal, P.P.; Ricard, D. Center of Pressure Displacement Characteristics Differentiate Fall Risk in Older People: A Systematic Review with Meta-Analysis. Ageing Res. Rev. 2020, 62, 101117. [Google Scholar] [CrossRef]
- Santos, D.A.; Duarte, M. A Public Data Set of Human Balance Evaluations. PeerJ 2016, 4, e2648. [Google Scholar] [CrossRef]
- Stel, V.S.; Smit, J.H.; Pluijm, S.M.F.; Lips, P. Balance and Mobility Performance as Treatable Risk Factors for Recurrent Falling in Older Persons. J. Clin. Epidemiol. 2003, 56, 659–668. [Google Scholar] [CrossRef]
- Pajala, S.; Era, P.; Koskenvuo, M.; Kaprio, J.; Törmäkangas, T.; Rantanen, T. Force Platform Balance Measures as Predictors of Indoor and Outdoor Falls in Community-Dwelling Women Aged 63-76 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 171–178. [Google Scholar] [CrossRef]
- Thapa, P.B.; Gideon, P.; Brockman, K.G.; Fought, R.L.; Ray, W.A. Clinical and Biomechanical Measures of Balance as Fall Predictors in Ambulatory Nursing Home Residents. J. Gerontol. A. Biol. Sci. Med. Sci. 1996, 51, M239–M246. [Google Scholar] [CrossRef]
- Berg, K.O.; Maki, B.E.; Williams, J.I.; Holliday, P.J.; Wood-Dauphinee, S.L. Clinical and Laboratory Measures of Postural Balance in an Elderly Population. Arch. Phys. Med. Rehabil. 1992, 73, 1073–1080. [Google Scholar]
- Park, M.W.; Kim, Y.D. A Systematic Procedure for Setting Parameters in Simulated Annealing Algorithms. Comput. Oper. Res. 1998, 25, 207–217. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Rajendran, C. An Experimental Evaluation of Heuristics for Scheduling in a Real-Life Flowshop with Sequence-Dependent Setup Times of Jobs. Int. J. Prod. Econ. 1997, 49, 255–263. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-58600-6. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.W. Machine Learning: A Concise Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-43919-6. [Google Scholar]
- Kubo, Y.; Fujii, K.; Hayashi, T.; Tomiyama, N.; Ochi, A.; Hayashi, H. Sex Differences in Modifiable Fall Risk Factors. J. Nurse Pract. 2021, 17, 1098–1102. [Google Scholar] [CrossRef]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk Factors for Falls among Older Adults: A Review of the Literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Moylan, K.C.; Binder, E.F. Falls in Older Adults: Risk Assessment, Management and Prevention. Am. J. Med. 2007, 120, 493.e1–493.e6. [Google Scholar] [CrossRef]
- Oliver, D.; Daly, F.; Martin, F.C.; McMurdo, M.E.T. Risk Factors and Risk Assessment Tools for Falls in Hospital In-Patients: A Systematic Review. Age Ageing 2004, 33, 122–130. [Google Scholar] [CrossRef]
- Oliver, D. Falls Risk-Prediction Tools for Hospital Inpatients. Time to Put Them to Bed? Age Ageing 2008, 37, 248–250. [Google Scholar] [CrossRef]
- Vassallo, M.; Poynter, L.; Sharma, J.C.; Kwan, J.; Allen, S.C. Fall Risk-Assessment Tools Compared with Clinical Judgment: An Evaluation in a Rehabilitation Ward. Age Ageing 2008, 37, 277–281. [Google Scholar] [CrossRef]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Front. Bioinforma. 2022, 2, 72. [Google Scholar] [CrossRef]
- Debuse, J.C.W.; Rayward-Smith, V.J. Feature Subset Selection within a Simulated Annealing Data Mining Algorithm. J. Intell. Inf. Syst. 1997, 9, 57–81. [Google Scholar] [CrossRef]
- Nikolaev, A.G.; Jacobson, S.H. Simulated Annealing. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2010; pp. 1–39. ISBN 978-1-4419-1665-5. [Google Scholar]
- Giovanini, L.H.F.; Manffra, E.F.; Nievola, J.C. Discriminating Postural Control Behaviors from Posturography with Statistical Tests and Machine Learning Models: Does Time Series Length Matter? In Proceedings of the Computational Science–ICCS 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 350–357. [Google Scholar]
- Estévez-Pedraza, Á.G.; Hernandez-Laredo, E.; Millan-Guadarrama, M.E.; Martínez-Méndez, R.; Carrillo-Vega, M.F.; Parra-Rodríguez, L. Reliability and Usability Analysis of an Embedded System Capable of Evaluating Balance in Elderly Populations Based on a Modified Wii Balance Board. Int. J. Environ. Res. Public. Health 2022, 19, 11026. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Pozzilli, C. The Diagnostic Accuracy of Static Posturography in Predicting Accidental Falls in People with Multiple Sclerosis. Neurorehabil. Neural Repair 2013, 27, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Forth, K.E.; Wirfel, K.L.; Adams, S.D.; Rianon, N.J.; Lieberman Aiden, E.; Madansingh, S.I. A Postural Assessment Utilizing Machine Learning Prospectively Identifies Older Adults at a High Risk of Falling. Front. Med. 2020, 7, 591517. [Google Scholar] [CrossRef]
- Montalvo-Jaramillo, C.I.; Pliego-Carrillo, A.C.; Peña-Castillo, M.Á.; Echeverría, J.C.; Becerril-Villanueva, E.; Pavón, L.; Ayala-Yáñez, R.; González-Camarena, R.; Berg, K.; Wessel, N.; et al. Comparison of Fetal Heart Rate Variability by Symbolic Dynamics at the Third Trimester of Pregnancy and Low-Risk Parturition. Heliyon 2020, 6, e03485. [Google Scholar] [CrossRef]
Total | Non-Fall Risk | Fall Risk | p-Value Means Difference Test | |
---|---|---|---|---|
n = 76 | n = 47 | n = 29 | ||
Sex [women] n (%) | 60 (78.94) | 33 (70.21) | 27 (93.10) | 0.017 * |
Age [years] | 71.3 ± 6.4 | 71.7 ± 6.5 | 70.6 ± 6.3 | 0.486 |
Height [cm] | 157.2 ± 8.1 | 158.2 ± 9.1 | 155.5 ± 5.9 | 0.124 |
Weight [kg] | 63.1 ± 8.4 | 63.6 ± 8.2 | 62.2 ± 8.6 | 0.477 |
BMI [kg/m2] | 25.5 ± 2.9 | 25.4 ± 2.9 | 25.6 ± 2.9 | 0.760 |
Foot length [cm] | 22.6 ± 1.3 | 22.9 ± 1.2 | 22.0 ± 1.3 | 0.006 * |
Polypharmacy | 2.3 ± 1.6 | 2.3 ± 1.4 | 2.3 ± 1.8 | 0.707 |
Fall in the last year | 0.9 ± 5.9 | - | 2.4 ± 9.5 | - |
CoP Index | Total | Non-Fall Risk | Fall Risk | KS Test | MD Test | HL Test | AUC (95% CI) |
---|---|---|---|---|---|---|---|
n = 181 | n = 94 | n = 87 | p-Value | p-Value | p-Value | ||
Frequency dispersion-AP [-] | 7.27 ± 1.06 | 7.13 ± 1.09 | 7.42 ± 1.01 | 0.000 * | 0.034 * | 0.400 | 0.591 (0.508–0.674) |
Total power-ML [mm2/Hz] | 63.14 ± 114.63 | 45.52 ± 32.64 | 82.17 ± 160.14 | 0.000 * | 0.048 * | 0.996 | 0.585 (0.501–0.668) |
Total power-RD [mm2/Hz] | 32.63 ± 56.53 | 25.7 ± 18.25 | 40.12 ± 78.86 | 0.000 * | 0.097 | 0.908 | 0.571 (0.487–0.655) |
Range-ML [mm] | 27.29 ± 13.28 | 25.66 ± 9.35 | 29.06 ± 16.39 | 0.000 * | 0.119 | 0.029 * | 0.567 (0.482–0.651) |
Range [mm] | 28.50 ± 13.39 | 26.97 ± 9.75 | 30.15 ± 16.34 | 0.000 * | 0.146 | 0.276 | 0.562 (0.478–0.647) |
Top | n | Train | Test | Validation | Train–Test–Validation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | SP | AUC | SE | SP | AUC | SE | SP | AUC | AUC (Mean ± Std) | |||
Hold-out | 1 | 31 | 0.92 | 0.96 | 0.94 | 0.72 | 0.78 | 0.75 | 0.70 | 0.78 | 0.74 | 0.815 ± 0.110 |
2 | 29 | 0.92 | 0.91 | 0.91 | 0.72 | 0.68 | 0.70 | 0.64 | 0.89 | 0.77 | 0.797 ± 0.109 | |
3 | 24 | 0.88 | 0.91 | 0.89 | 0.66 | 0.73 | 0.70 | 0.70 | 0.78 | 0.74 | 0.782 ± 0.102 | |
4 | 15 | 0.80 | 0.85 | 0.83 | 0.94 | 0.63 | 0.78 | 0.70 | 0.73 | 0.72 | 0.780 ± 0.055 | |
5 | 30 | 0.92 | 0.80 | 0.86 | 0.83 | 0.63 | 0.73 | 0.64 | 0.84 | 0.74 | 0.780 ± 0.072 | |
Bootstrap | 1 | 31 | 0.94 | 0.98 | 0.96 | 0.33 | 0.84 | 0.58 | 0.33 | 0.84 | 0.65 | 0.734 ± 0.200 |
2 | 29 | 0.90 | 1.00 | 0.95 | 0.16 | 0.89 | 0.53 | 0.16 | 0.89 | 0.58 | 0.690 ± 0.228 | |
3 | 24 | 0.94 | 0.96 | 0.95 | 0.38 | 0.84 | 0.61 | 0.38 | 0.84 | 0.53 | 0.702 ± 0.220 | |
4 | 15 | 0.82 | 0.85 | 0.84 | 0.77 | 0.68 | 0.73 | 0.77 | 0.82 | 0.85 | 0.773 ± 0.059 | |
5 | 30 | 0.92 | 0.89 | 0.90 | 0.50 | 0.73 | 0.61 | 0.50 | 0.73 | 0.56 | 0.698 ± 0.183 |
Total | Male | Female | p-Value Means Difference Test | |
---|---|---|---|---|
n = 181 | n = 34 | n = 147 | ||
Weight [kg] | 62.99 ± 8.4 | 67.89 ± 7.05 | 61.86 ± 8.3 | 0.000 * |
BMI [kg/m2] | 25.55 ± 2.9 | 24.3 ± 1.89 | 25.83 ± 3.02 | 0.000 * |
Mean distance [mm] | 5.17 ± 2.45 | 6.87 ± 3.87 | 4.78 ± 1.79 | 0.004 * |
Total length AP [mm] | 324.71 ± 158.25 | 411.47 ± 215.79 | 304.64 ± 134.88 | 0.009 * |
Standard deviation of RD [mm] | 2.95 ± 1.48 | 3.93 ± 2.49 | 2.72 ± 1.01 | 0.009 * |
Mean frequency-ML [Hz] | 4.55 ± 1.81 | 4.1 ± 1.22 | 4.65 ± 1.92 | 0.040 * |
Range [mm] | 28.5 ± 13.39 | 37.35 ± 23.01 | 26.45 ± 8.89 | 0.010 * |
Total power-AP [mm2/Hz] | 22.43 ± 19.49 | 35.03 ± 24.25 | 19.51 ± 17.03 | 0.001 * |
95% power frequency-AP [Hz] | 9.83 ± 2.5 | 9.47 ± 2.98 | 9.91 ± 2.38 | 0.418 |
50% power frequency-AP [Hz] | 2.66 ± 1.96 | 2.51 ± 2.08 | 2.69 ± 1.94 | 0.458 |
Centroidal frequency-RD [Hz] | 7.08 ± 2.05 | 6.56 ± 1.55 | 7.2 ± 2.13 | 0.101 |
Centroidal frequency-AP [Hz] | 5.42 ± 1.57 | 5.21 ± 1.83 | 5.47 ± 1.51 | 0.390 |
Frequency dispersion-ML [-] | 5.88 ± 1.55 | 5.4 ± 1.7 | 5.98 ± 1.5 | 0.847 |
Centroidal frequency-ML [Hz] | 7.4 ± 0.89 | 7.43 ± 0.91 | 7.39 ± 0.89 | 0.074 |
Work (Year) | Technology | Stabilometric Test | Dataset | Sample Size | Pre-Processing | Algorithm | Label | Validation Method | Performance |
---|---|---|---|---|---|---|---|---|---|
Top 1 (This work) | Force platform (OPT400600-1000) 100 Hz | Static test with open eyes | [26] | 76 older adults | Compute CoP indices | BC and SA | Fall risk (FH + FES score) | 60–20–20 hold-out | AUC: 0.815 SE: 0.783 SP: 0.847 |
Top 4 (This work) | Force platform (OPT400600-1000) 100 Hz | Static test with open eyes | [26] | 76 older adults | Compute CoP indices | BC and SA | Fall risk (FH + Short FES-I) | 60–20–20 hold-out | AUC: 0.780 SE: 0.818 SP: 0.741 |
[23] (2021) | Force platform (OPT400600-1000) 100 Hz | Static test with open and close eyes on soft and hard surface | [26] | 76 older adults | Empirical Mode DeComposition, and compute CoP indices | RF | Fall risk (FH + Short FES-I e) | 80–20 hold-out | SE: 0.760 SP: 0.860 ACC: 0.820 |
[15] (2016) | Wii Balance Board 25 Hz | Static test with open and close eyes | Own | 80 older adults | Compute CoP indices | Raking Forest | FH | 70–30 hold-out | AUC: 0.750 |
[20] (2019) | Force platform (OPT400600-1000) 100 Hz | Static test with open and close eyes on soft and hard surface | [26] | 76 older adults | Compute CoP indices | MLP SVM NB K-NN and Feature selection | Fall risk (FH + Short FES-I) | 80–20 hold-out | AUC: 0.710 ACC: 0.800 |
[50] (2018) | Force platform (OPT400600-1000) 100 Hz | Static test with open and close eyes on soft and hard surface | [26] | 163 people between 18 and 85 years old | Compute CoP indices | K-NN DTs MLP NB RF SVM | Fall risk (HF + MiniBEST) | 10-Fold | ACC: 0.649 |
[24] (2021) | Force platform (AccuSway) 120 Hz | Static test with open and close eyes | Own | 126 older women with osteoporosis | Compute CoP indices, and data balancing | NB SVM AdaBoost K-NN | FH | 10-Fold | SE: 0.810 SP: 0.190 |
[17] (2016) | Force platform (Advenced Mechanical Technology) 100 Hz | Static test with open and close eyes | Own | 76 older adults | Compute CoP indices | LR | FH | None | AUC: 0.900 |
[51] (2022) | Wii Balance Board 50 Hz | Static test with open and close eyes | Own | 46 older adults | Compute CoP indices | LR | Balance deficit (4-stage balance) | None | AUC: 0.770 SE: 0.930 SP: 0.620 |
[52] (2013) | Force platform (Tecnobody) 20 Hz | Static test with open and close eyes | Own | 100 older adults | Compute CoP indices | LR | FH | None | SE: 0.880 SP: 0.670 |
[21] (2018) | Force platform (EMG system do Brasil) 100 Hz | Unipodal static test | Own | 170 older adults | Compute CoP indices | ROC | FH | None | AUC: 0.720 SE: 0.660 SP: 0.680 |
[16] (2021) | Wii Balance Board 50 Hz | Static test with open and close eyes | Own | 497 older adults | Compute CoP indices | LR | Balance alteration (4-stage balance) | None | AUC: 0.710 SE: 0.490 SP: 0.830 |
[19] (2015) | Wii Balance Board | Static test with open eyes | Own | 73 older adults | Compute CoP indices | LR | FH | None | AUC: 0.71 |
[18] (2017) | Wii Balance Board 100 Hz | Static test with open and close eyes | Own | 100 older adults | Compute CoP indices | Discriminant analysis | FH | None | SE: 0.710 SP: 0.570 |
[53] (2020) | Force platform (SmartScale-Zibro) 60 Hz | Static test with open eyes | Own | 412 older adults | Compute CoP indices | ROC | FH | None | AUC: 0.640 SE: 0.640 SP: 0.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Laredo, E.; Estévez-Pedraza, Á.G.; Santiago-Fuentes, L.M.; Parra-Rodríguez, L. Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and Simulated Annealing. Bioengineering 2024, 11, 908. https://doi.org/10.3390/bioengineering11090908
Hernandez-Laredo E, Estévez-Pedraza ÁG, Santiago-Fuentes LM, Parra-Rodríguez L. Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and Simulated Annealing. Bioengineering. 2024; 11(9):908. https://doi.org/10.3390/bioengineering11090908
Chicago/Turabian StyleHernandez-Laredo, Enrique, Ángel Gabriel Estévez-Pedraza, Laura Mercedes Santiago-Fuentes, and Lorena Parra-Rodríguez. 2024. "Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and Simulated Annealing" Bioengineering 11, no. 9: 908. https://doi.org/10.3390/bioengineering11090908
APA StyleHernandez-Laredo, E., Estévez-Pedraza, Á. G., Santiago-Fuentes, L. M., & Parra-Rodríguez, L. (2024). Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and Simulated Annealing. Bioengineering, 11(9), 908. https://doi.org/10.3390/bioengineering11090908