External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
Private Dataset Collection
2.2. Data Preprocessing
2.3. Model Training
2.4. Evaluation
2.5. Interpretability Using Grad-CAM
3. Results
3.1. Datasets
3.1.1. Private Datasets
3.1.2. Public Datasets
Dataset | Medical Etiology (n = 2346) | Trauma Etiology (n = 315) |
---|---|---|
South Korea Dataset (n = 114) | 0 | 114 |
Virginia Dataset (n = 192) | 0 | 192 |
DeepEyeNet (n = 335) | 332 | 3 |
RFMiD (n = 1924) | 1918 | 6 |
BRSET (n = 96) | 96 | 0 |
3.2. Model Performance on External Datasets
3.3. Interpretability Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khosravi, P.; Huck, N.A.; Shahraki, K.; Hunter, S.C.; Danza, C.N.; Kim, S.Y.; Forbes, B.J.; Dai, S.; Levin, A.V.; Binenbaum, G.; et al. Deep Learning Approach for Differentiating Etiologies of Pediatric Retinal Hemorrhages: A Multicenter Study. Int. J. Mol. Sci. 2023, 24, 15105. [Google Scholar] [CrossRef]
- Shahraki, K.; Suh, D.W. An Update to Biomechanical and Biochemical Principles of Retinal Injury in Child Abuse. Children 2024, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Jang, H.Y.; Kim, K.W.; Shin, Y.; Park, S.H. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J. Radiol. 2019, 20, 405–410. [Google Scholar] [CrossRef]
- Yao, A.D.; Cheng, D.L.; Pan, I.; Kitamura, F. Deep Learning in Neuroradiology: A Systematic Review of Current Algorithms and Approaches for the New Wave of Imaging Technology. Radiol. Artif. Intell. 2020, 2, e190026. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Blears, E.E.; Ross, E.; Lall, R.R.; Ortega-Barnett, J. Machine Learning Applications for the Differentiation of Primary Central Nervous System Lymphoma from Glioblastoma on Imaging: A Systematic Review and Meta-Analysis. Neurosurg. Focus 2018, 45, E5. [Google Scholar] [CrossRef]
- Gu, Z.; Li, Y.; Wang, Z.; Kan, J.; Shu, J.; Wang, Q. Classification of Diabetic Retinopathy Severity in Fundus Images Using the Vision Transformer and Residual Attention. Comput. Intell. Neurosci. 2023, 2023, 1305583. [Google Scholar] [CrossRef]
- Gunturkun, F.; Bakir-Batu, B.; Siddiqui, A.; Lakin, K.; Hoehn, M.E.; Vestal, R.; Davis, R.L.; Shafi, N.I. Development of a Deep Learning Model for Retinal Hemorrhage Detection on Head Computed Tomography in Young Children. JAMA Netw. Open 2023, 6, e2319420. [Google Scholar] [CrossRef] [PubMed]
- Tvenning, A.-O.; Hanssen, S.R.; Austeng, D.; Morken, T.S. Deep Learning Identify Retinal Nerve Fibre and Choroid Layers as Markers of Age-Related Macular Degeneration in the Classification of Macular Spectral-Domain Optical Coherence Tomography Volumes. Acta Ophthalmol. 2022, 100, 937–945. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, F.F.; Gao, L.; Sun, Z.; Liu, Q.; Dwivedi-Yu, J.; Yang, Y.; Callan, J.; Neubig, G. Active Retrieval Augmented Generation. arXiv 2023, arXiv:2305.06983. [Google Scholar]
- Arman, S.; Rahman, S.; Irtisam, N.; Deowan, S.; Islam, M.; Sakib, S.; Hasan, M. Intracranial Hemorrhage Classification From CT Scan Using Deep Learning and Bayesian Optimization. IEEE Access 2023, 11, 83446–83460. [Google Scholar] [CrossRef]
- Abitbol, E.; Miere, A.; Excoffier, J.-B.; Mehanna, C.-J.; Amoroso, F.; Kerr, S.; Ortala, M.; Souied, E.H. Deep Learning-Based Classification of Retinal Vascular Diseases Using Ultra-Widefield Colour Fundus Photographs. BMJ Open Ophthalmol. 2022, 7, e000924. [Google Scholar] [CrossRef] [PubMed]
- Shakya, S.; Vasquez, M.; Wang, Y.; Tchoua, R.; Furst, J.; Raicu, D. Human-in-the-Loop Deep Learning Retinal Image Classification with Customized Loss Function. In Proceedings of the Medical Imaging 2022: Computer-Aided Diagnosis, San Diego, CA, USA, 20–24 February 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12033, pp. 526–533. [Google Scholar]
- Yu, A.C.; Mohajer, B.; Eng, J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiol. Artif. Intell. 2022, 4, e210064. [Google Scholar] [CrossRef]
- Nakayama, L.F.; Restrepo, D.; Matos, J.; Ribeiro, L.Z.; Malerbi, F.K.; Celi, L.A.; Regatieri, C.S. BRSET: A Brazilian Multilabel Ophthalmological Dataset of Retina Fundus Photos. PLoS Digit. Health 2024, 3, e0000454. [Google Scholar] [CrossRef]
- Asia, A.-O.; Zhu, C.-Z.; Althubiti, S.A.; Al-Alimi, D.; Xiao, Y.-L.; Ouyang, P.-B.; Al-Qaness, M.A.A. Detection of Diabetic Retinopathy in Retinal Fundus Images Using CNN Classification Models. Electronics 2022, 11, 2740. [Google Scholar] [CrossRef]
- Hardas, M.; Mathur, S.; Bhaskar, A.; Kalla, M. Retinal Fundus Image Classification for Diabetic Retinopathy Using SVM Predictions. Phys. Eng. Sci. Med. 2022, 45, 781–791. [Google Scholar] [CrossRef]
- Tak, N.; Reddy, A.J.; Martel, J.; Martel, J.B. Clinical Wide-Field Retinal Image Deep Learning Classification of Exudative and Non-Exudative Age-Related Macular Degeneration. Cureus 2021, 13, e17579. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Vasu, P.K.A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. FastViT: A Fast Hybrid Vision Transformer Using Structural Reparameterization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 4–6 October 2023. [Google Scholar]
- Wightman, R.; Raw, N.; Soare, A.; Arora, A.; Ha, C.; Reich, C.; Guan, F.; Kaczmarzyk, J. Rwightman/Pytorch-Image-Models, V0.8.10dev0 Release; Mobility Technologies Co., Ltd.: Cambridge, MA, USA, 2023. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Pachade, S.; Porwal, P.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Luo, Z.; Han, F.; Sun, Z.; Qihan, L.; Kamata, S.; et al. RFMiD: Retinal Image Analysis for Multi-Disease Detection Challenge. Med. Image Anal. 2025, 99, 103365. [Google Scholar] [CrossRef]
- Pachade, S.; Porwal, P.; Thulkar, D.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Giancardo, L.; Quellec, G.; Mériaudeau, F. Retinal Fundus Multi-Disease Image Dataset (RFMiD): A Dataset for Multi-Disease Detection Research. Data 2021, 6, 14. [Google Scholar] [CrossRef]
- Huang, J.-H.; Huck Yang, C.-H.; Liu, F.; Tian, M.; Liu, Y.-C.; Wu, T.-W.; Lin, I.-H.; Wang, K.; Morikawa, H.; Chang, H.; et al. DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; IEEE: Waikoloa, HI, USA, 2021; pp. 2441–2451. [Google Scholar]
- Watts, P.; Maguire, S.; Kwok, T.; Talabani, B.; Mann, M.; Wiener, J.; Lawson, Z.; Kemp, A. Newborn Retinal Hemorrhages: A Systematic Review. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2013, 17, 70–78. [Google Scholar] [CrossRef]
- Binenbaum, G.; Rogers, D.L.; Forbes, B.J.; Levin, A.V.; Clark, S.A.; Christian, C.W.; Liu, G.T.; Avery, R. Patterns of Retinal Hemorrhage Associated With Increased Intracranial Pressure in Children. Pediatrics 2013, 132, e430–e434. [Google Scholar] [CrossRef] [PubMed]
- Song, H.H.; Thoreson, W.B.; Dong, P.; Shokrollahi, Y.; Gu, L.; Suh, D.W. Exploring the Vitreoretinal Interface: A Key Instigator of Unique Retinal Hemorrhage Patterns in Pediatric Head Trauma. Korean J. Ophthalmol. 2022, 36, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Di Fazio, N.; Delogu, G.; Morena, D.; Cipolloni, L.; Scopetti, M.; Mazzilli, S.; Frati, P.; Fineschi, V. New Insights into the Diagnosis and Age Determination of Retinal Hemorrhages from Abusive Head Trauma: A Systematic Review. Diagnostics 2023, 13, 1722. [Google Scholar] [CrossRef] [PubMed]
- Binenbaum, G.; Chen, W.; Huang, J.; Ying, G.-S.; Forbes, B.J. The Natural History of Retinal Hemorrhage in Pediatric Head Trauma. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2016, 20, 131–135. [Google Scholar] [CrossRef]
- Stein, H.A.; Stein, R.M.; Freeman, M.I. Common Retinal Disorders. In The Ophthalmic Assistant, 10th ed.; Stein, H.A., Stein, R.M., Freeman, M.I., Eds.; Elsevier: London, UK, 2018; pp. 413–435. ISBN 978-0-323-39477-2. [Google Scholar]
- Patel, N.A.; Altamirano, F.; Hoyek, S.; De Bruyn, H.; Fulton, A.; Gise, R.; Mantagos, I.S.; Wu, C.; Gonzalez, E.; VanderVeen, D.K. Validation of the “TWO-ROP” Algorithm at a Multi-Neonatal Intensive Care Unit Tertiary Referral Center. Ophthalmol. Retin. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Huck, N.; Shahraki, K.; Kim, S.Y.; Crouch, E.; Xie, X.; Suh, D.W. Deep Learning in Pediatric Ophthalmology: Differentiating Abusive Head Trauma in Retinal Fundus Images. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1618. [Google Scholar]
- Coyner, A.S.; Murickan, T.; Oh, M.A.; Young, B.K.; Ostmo, S.R.; Singh, P.; Chan, R.V.P.; Moshfeghi, D.M.; Shah, P.K.; Venkatapathy, N.; et al. Multinational External Validation of Autonomous Retinopathy of Prematurity Screening. JAMA Ophthalmol. 2024, 142, 327–335. [Google Scholar] [CrossRef] [PubMed]
Class | Positive Predictive Value | Sensitivity | F1-Score |
---|---|---|---|
ResNet18 Model (AUC = 0.9626, Accuracy = 94.66%) | |||
Medical (n = 2346) | 98.93 | 94.97 | 0.9691 |
Trauma (n = 315) | 71.15 | 92.38 | 0.8039 |
FastViT_SA12 (AUC = 0.9811, Accuracy = 96.99%) | |||
Medical (n = 2346) | 99.35 | 97.23 | 0.9828 |
Trauma (n = 315) | 82.19 | 95.24 | 0.8824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosravi, P.; Huck, N.A.; Shahraki, K.; Ghafari, E.; Azimi, R.; Kim, S.Y.; Crouch, E.; Xie, X.; Suh, D.W. External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets. Bioengineering 2025, 12, 20. https://doi.org/10.3390/bioengineering12010020
Khosravi P, Huck NA, Shahraki K, Ghafari E, Azimi R, Kim SY, Crouch E, Xie X, Suh DW. External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets. Bioengineering. 2025; 12(1):20. https://doi.org/10.3390/bioengineering12010020
Chicago/Turabian StyleKhosravi, Pooya, Nolan A. Huck, Kourosh Shahraki, Elina Ghafari, Reza Azimi, So Young Kim, Eric Crouch, Xiaohui Xie, and Donny W. Suh. 2025. "External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets" Bioengineering 12, no. 1: 20. https://doi.org/10.3390/bioengineering12010020
APA StyleKhosravi, P., Huck, N. A., Shahraki, K., Ghafari, E., Azimi, R., Kim, S. Y., Crouch, E., Xie, X., & Suh, D. W. (2025). External Validation of Deep Learning Models for Classifying Etiology of Retinal Hemorrhage Using Diverse Fundus Photography Datasets. Bioengineering, 12(1), 20. https://doi.org/10.3390/bioengineering12010020