The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review
Abstract
:1. Introduction
2. Method of Literature Search
3. The Application of Terahertz in Medical Fields
4. The Application of Terahertz in Corneas
4.1. THz Scanning System Used in Corneal Scans
4.2. Safety Profile of THz Radiation on Corneas
4.3. The Application of THz Technology in the Quantification of Corneal Sublayers
4.4. THz Imaging in Dry Eye Disease
4.5. THz Imaging in Assessing Corneal Endothelium
4.6. THz Imaging in Corneal Hydration
4.7. Corneal Elasticity
4.8. Corneal Scars
5. Future Directions
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Nagatsuma, T.; Nishii, H.; Ikeo, T. Terahertz Imaging Based on Optical Coherence Tomography [Invited]. Photonics Res. 2014, 2, B64–B69. [Google Scholar] [CrossRef]
- Leitenstorfer, A.; Moskalenko, A.S.; Kampfrath, T.; Kono, J.; Castro-Camus, E.; Peng, K.; Qureshi, N.; Turchinovich, D.; Tanaka, K.; Markelz, A.G.; et al. The 2023 Terahertz Science and Technology Roadmap. J. Phys. D Appl. Phys. 2023, 56, 223001. [Google Scholar] [CrossRef]
- Hu, B.B.; Nuss, M.C. Imaging with Terahertz Waves. Opt. Lett. 1995, 20, 1716–1718. [Google Scholar] [CrossRef]
- Globus, T.; Sizov, I.; Ferrance, J.; Jazaeri, A.; Bryant, J.; Moyer, A.; Gelmont, B.; Kester, M.; Bykhovski, A. Sub-Terahertz Vibrational Spectroscopy for microRNA Based Diagnostic of Ovarian Cancer. Converg. Sci. Phys. Oncol. 2016, 2, 045001. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the Fast Relaxation Component of Water and Heavy Water Revealed by Terahertz Time-Domain Attenuated Total Reflection Spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V.P. Biomedical Applications of Terahertz Technology. J. Phys. D Appl. Phys. 2006, 39, R301. [Google Scholar] [CrossRef]
- Rønne, C.; Keiding, S.R. Low Frequency Spectroscopy of Liquid Water Using THz-Time Domain Spectroscopy. J. Mol. Liq. 2002, 101, 199–218. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, S.-H.; Jeong, K.; Park, Y.; Huh, Y.-M.; Son, J.-H.; Suh, J.-S. Measurement Depth Enhancement in Terahertz Imaging of Biological Tissues. Opt. Express 2013, 21, 21299–21305. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.M.; Wallace, V.P.; Pye, R.J.; Cole, B.E.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz Pulse Imaging of Ex Vivo Basal Cell Carcinoma. J. Investig. Dermatol. 2003, 120, 72–78. [Google Scholar] [CrossRef]
- Berry, E.; Handley, J.W.; Fitzgerald, A.J.; Merchant, W.J.; Boyle, R.D.; Zinov’ev, N.N.; Miles, R.E.; Chamberlain, J.M.; Smith, M.A. Multispectral Classification Techniques for Terahertz Pulsed Imaging: An Example in Histopathology. Med. Eng. Phys. 2004, 26, 423–430. [Google Scholar] [CrossRef]
- Woodward, R.M.; Cole, B.E.; Wallace, V.P.; Pye, R.J.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz Pulse Imaging in Reflection Geometry of Human Skin Cancer and Skin Tissue. Phys. Med. Biol. 2002, 47, 3853. [Google Scholar] [CrossRef] [PubMed]
- Wallace, V.P.; Fitzgerald, A.J.; Shankar, S.; Flanagan, N.; Pye, R.; Cluff, J.; Arnone, D.D. Terahertz Pulsed Imaging of Basal Cell Carcinoma Ex Vivo and in Vivo. Br. J. Dermatol. 2004, 151, 424–432. [Google Scholar] [CrossRef]
- Hernandez-Cardoso, G.G.; Amador-Medina, L.F.; Gutierrez-Torres, G.; Reyes-Reyes, E.S.; Benavides Martínez, C.A.; Cardona Espinoza, C.; Arce Cruz, J.; Salas-Gutierrez, I.; Murillo-Ortíz, B.O.; Castro-Camus, E. Terahertz Imaging Demonstrates Its Diagnostic Potential and Reveals a Relationship between Cutaneous Dehydration and Neuropathy for Diabetic Foot Syndrome Patients. Sci. Rep. 2022, 12, 3110. [Google Scholar] [CrossRef] [PubMed]
- Enatsu, T.; Kitahara, H.; Takano, K.; Nagashima, T. Terahertz Spectroscopic Imaging of Paraffin-Embedded Liver Cancer Samples. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, UK, 2–9 September 2007; pp. 557–558. [Google Scholar] [CrossRef]
- Ashworth, P.C.; Pickwell-MacPherson, E.; Provenzano, E.; Pinder, S.E.; Purushotham, A.D.; Pepper, M.; Wallace, V.P. Terahertz Pulsed Spectroscopy of Freshly Excised Human Breast Cancer. Opt. Express 2009, 17, 12444–12454. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Wallace, V.P.; Pinder, S.E.; Purushotham, A.D.; O’Kelly, P.; Ashworth, P.C. Classification of Terahertz-Pulsed Imaging Data from Excised Breast Tissue. J. Biomed. Opt. 2012, 17, 016005. [Google Scholar] [CrossRef] [PubMed]
- Wallace, V.P.; Fitzgerald, A.J.; Pickwell, E.; Pye, R.J.; Taday, P.F.; Flanagan, N.; Ha, T. Terahertz Pulsed Spectroscopy of Human Basal Cell Carcinoma. Appl. Spectrosc. 2006, 60, 1127–1133. [Google Scholar] [CrossRef]
- Gezimati, M.; Singh, G. Terahertz Imaging Technology for Localization of Cancer Tumours: A Technical Review. Multimed. Tools Appl. 2024, 83, 33675–33711. [Google Scholar] [CrossRef]
- Jaskille, A.D.; Shupp, J.W.; Jordan, M.H.; Jeng, J.C. Critical Review of Burn Depth Assessment Techniques: Part I. Historical Review. J. Burn. Care Res. 2009, 30, 937–947. [Google Scholar] [CrossRef]
- Singh, V.; Devgan, L.; Bhat, S.; Milner, S.M. The Pathogenesis of Burn Wound Conversion. Ann. Plast. Surg. 2007, 59, 109. [Google Scholar] [CrossRef]
- Tewari, P.; Bajwa, N.; Singh, R.S.; Culjat, M.O.; Grundgest, W.S.; Taylor, Z.D.; Kealey, C.P.; Bennett, D.B.; Barnett, K.S.; Stojadinovic, A. In Vivo Terahertz Imaging of Rat Skin Burns. J. Biomed. Opt. 2012, 17, 040503. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.M. The diagnosis of the depth of burning. Br. J. Surg. 1953, 40, 588–596. [Google Scholar] [CrossRef]
- Fuest, M.; Liu, Y.C.; Yam, G.H.; Teo, E.P.; Htoon, H.M.; Coroneo, M.T.; Mehta, J.S. Femtosecond laser-assisted conjunctival autograft preparation for pterygium surgery. Ocul. Surf. 2017, 15, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Kurpakus-Wheater, M.; Kernacki, K.A.; Hazlett, L.D. Maintaining Corneal Integrity How the “Window” Stays Clear. Prog. Histochem. Cytochem. 2001, 36, 179–259. [Google Scholar] [CrossRef]
- Kaur, S.; Sohnen, P.; Swamynathan, S.; Du, Y.; Espana, E.M.; Swamynathan, S.K. Molecular Nature of Ocular Surface Barrier Function, Diseases That Affect It, and Its Relevance for Ocular Drug Delivery. Ocul. Surf. 2023, 30, 3–13. [Google Scholar] [CrossRef]
- Chow, B.J.; Lee, I.X.Y.; Liu, C.; Liu, Y.-C. Potential Therapeutic Effects of Peroxisome Proliferator-Activated Receptors on Corneal Diseases. Exp. Biol. Med. 2024, 249, 10142. [Google Scholar] [CrossRef] [PubMed]
- Zucker, B.B. Hydration and Transparency of Corneal Stroma. Arch. Ophthalmol. 1966, 75, 228–231. [Google Scholar] [CrossRef]
- Afshari, N. Structure and Function of the External Eye and Cornea. In External Disease and Cornea; American Academy of Ophthalmology: San Francisco, CA, USA, 2016; pp. 8–9. [Google Scholar]
- Sung, S.; Garritano, J.; Bajwa, N.; Deng, S.; Hubschman, J.-P.; Grundfest, W.S.; Taylor, Z.D. Preliminary Results of Non-Contact THz Imaging of Cornea. Proc. SPIE Int. Soc. Opt. Eng. 2015, 9362, 93620C. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Ke, L.; Yang, S.W.Q.; Nan, Z.; Teo, E.P.W.; Lwin, N.C.; Lin, M.T.-Y.; Lee, I.X.Y.; Chan, A.S.-Y.; Schmetterer, L.; et al. Safety Profiles of Terahertz Scanning in Ophthalmology. Sci. Rep. 2021, 11, 2448. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Wu, Q.Y.S.; Zhang, N.; Yang, Z.; Teo, E.P.W.; Mehta, J.S.; Liu, Y.-C. Terahertz Spectroscopy Analysis of Human Corneal Sublayers. J. Biomed. Opt. 2021, 26, 043011. [Google Scholar] [CrossRef]
- Ke, L.; Zhang, N.; Wu, Q.Y.S.; Gorelik, S.; Abdelaziem, A.; Liu, Z.; Teo, E.P.W.; Mehta, J.S.; Liu, Y.-C. In Vivo Sensing of Rabbit Cornea by Terahertz Technology. J. Biophotonics 2021, 14, e202100130. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Wu, Q.Y.S.; Zhang, N.; Liu, H.W.; Teo, E.P.W.; Mehta, J.S.; Liu, Y.-C. Ex Vivo Sensing and Imaging of Corneal Scar Tissues Using Terahertz Time Domain Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119667. [Google Scholar] [CrossRef]
- Ke, L.; Zhang, L.; Zhang, N.; Wu, Q.Y.S.; Leong, H.S.; Abdelaziem, A.; Mehta, J.S.; Liu, Y.-C. Corneal Elastic Property Investigated by Terahertz Technology. Sci. Rep. 2022, 12, 19229. [Google Scholar] [CrossRef]
- Koyama, S.; Narita, E.; Shimizu, Y.; Shiina, T.; Taki, M.; Shinohara, N.; Miyakoshi, J. Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells. Int. J. Environ. Res. Public Health 2016, 13, 793. [Google Scholar] [CrossRef] [PubMed]
- Foroughimehr, N.; Vilagosh, Z.; Yavari, A.; Wood, A. Investigating the Impact of Synchrotron THz Radiation on the Corneal Hydration Using Synchrotron THz-Far Infrared Beamline. Sensors 2022, 22, 8261. [Google Scholar] [CrossRef]
- Han, S.B.; Hyon, J.Y.; Woo, S.J.; Lee, J.J.; Kim, T.H.; Kim, K.W. Prevalence of Dry Eye Disease in an Elderly Korean Population. Arch. Ophthalmol. 2011, 129, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-Y.; Tsai, S.-Y.; Cheng, C.-Y.; Liu, J.-H.; Chou, P.; Hsu, W.-M. Prevalence of Dry Eye among an Elderly Chinese Population in Taiwan: The Shihpai Eye Study. Ophthalmology 2003, 110, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.H.Y.; Ong, H.S.; Liu, Y.-C.; Tong, L. Meibomian Gland Dysfunction Is the Primary Determinant of Dry Eye Symptoms: Analysis of 2346 Patients. Ocul. Surf. 2020, 18, 604–612. [Google Scholar] [CrossRef]
- Han, S.B.; Liu, Y.-C.; Mohamed-Noriega, K.; Tong, L.; Mehta, J.S. Objective Imaging Diagnostics for Dry Eye Disease. J. Ophthalmol. 2020, 2020, 3509064. [Google Scholar] [CrossRef] [PubMed]
- Ozheredov, I.; Mischenko, M.; Prokopchuk, M.; Saphonova, T.; Sikach, E.; Balakin, E.; Solyankin, P.; Shkurinov, A. Clinical Application of Terahertz Reflectometry for Sensing of Corneal Tissue and Tear Film. In Proceedings of the 2018 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 4–8 June 2018; p. 499. [Google Scholar]
- Ozheredov, I.; Safonova, T.; Sikach, E.; Mischenko, M.; Prokopchuk, M.; Larichev, A.; Listopadskaya, Y.; Shkurinov, A. Potential Clinical Applications of Terahertz Reflectometry for the Assessment of the Tear Film Stability. Opt. Eng. 2020, 59, 061622. [Google Scholar] [CrossRef]
- Srinivas, S.P. Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium. Exp. Eye Res. 2012, 95, 8–15. [Google Scholar] [CrossRef]
- Bonanno, J.A. Molecular Mechanisms Underlying the Corneal Endothelial Pump. Exp. Eye Res. 2012, 95, 2–7. [Google Scholar] [CrossRef]
- Li, S.; Kim, E.; Bonanno, J.A. Fluid Transport by the Cornea Endothelium Is Dependent on Buffering Lactic Acid Efflux. Am. J. Physiol.-Cell Physiol. 2016, 311, C116–C126. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Petsche, S.J.; Pinsky, P.M. A Structural Model for the In Vivo Human Cornea Including Collagen-Swelling Interaction. J. R. Soc. Interface 2015, 12, 20150241. [Google Scholar] [CrossRef]
- Cheng, X.; Pinsky, P.M. Mechanisms of Self-Organization for the Collagen Fibril Lattice in the Human Cornea. J. R. Soc. Interface 2013, 10, 20130512. [Google Scholar] [CrossRef]
- Ammar, D.A.; Lei, T.C.; Kahook, M.Y.; Masihzadeh, O. Imaging the Intact Mouse Cornea Using Coherent Anti-Stokes Raman Scattering (CARS). Investig. Ophthalmol. Vis. Sci. 2013, 54, 5258–5265. [Google Scholar] [CrossRef]
- Shao, P.; Seiler, T.G.; Eltony, A.M.; Ramier, A.; Kwok, S.J.J.; Scarcelli, G.; II, R.P.; Yun, S.-H. Effects of Corneal Hydration on Brillouin Microscopy In Vivo. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3020–3027. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Harris, Z.B.; Virk, A.; Abazari, A.; Varadaraj, K.; Honkanen, R.; Arbab, M.H. Assessing Corneal Endothelial Damage Using Terahertz Time-Domain Spectroscopy and Support Vector Machines. Sensors 2022, 22, 9071. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Teo, E.P.W.; Adnan, K.B.; Yam, G.H.F.; Peh, G.S.L.; Tan, D.T.-H.; Mehta, J.S. Endothelial Approach Ultrathin Corneal Grafts Prepared by Femtosecond Laser for Descemet Stripping Endothelial Keratoplasty. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8393–8401. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Lwin, N.C.; Chan, N.S.W.; Mehta, J.S. Use of Anterior Segment Optical Coherence Tomography to Predict Corneal Graft Rejection in Small Animal Models. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6736–6741. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.M. The Structure and Transparency of the Cornea. J. Physiol. 1957, 136, 263–286. [Google Scholar] [CrossRef]
- Iomdina, E.N.; Goltsman, G.N.; Seliverstov, S.V.; Sianosyan, A.A.; Teplyakova, K.O.; Rusova, A.A. Study of Transmittance and Reflectance Spectra of the Cornea and the Sclera in the THz Frequency Range. J. Biomed. Opt. 2016, 21, 097002. [Google Scholar] [CrossRef]
- Iomdina, E.N.; Seliverstov, S.V.; Teplyakova, K.O.; Jani, E.V.; Pozdniakova, V.V.; Polyakova, O.N.; Goltsman, G.N. Terahertz Scanning of the Rabbit Cornea with Experimental UVB-Induced Damage: In Vivo Assessment of Hydration and Its Verification. J. Biomed. Opt. 2021, 26, 043010. [Google Scholar] [CrossRef]
- Bennett, D.B.; Taylor, Z.D.; Tewari, P.; Singh, R.S.; Culjat, M.O.; Grundfest, W.S.; Sassoon, D.J.; Johnson, R.D.; Hubschman, J.-P.; Brown, E.R. Terahertz Sensing in Corneal Tissues. J. Biomed. Opt. 2011, 16, 057003. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Tewari, P.; Bourges, J.L.; Hubschman, J.P.; Bennett, D.B.; Taylor, Z.D.; Lee, H.; Brown, E.R.; Grundfest, W.S.; Culjat, M.O. Terahertz Sensing of Corneal Hydration. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3021–3024. [Google Scholar]
- Bennett, D.B.; Taylor, Z.D.; Tewari, P.; Sung, S.; Maccabi, A.; Singh, R.S.; Culjat, M.O.; Grundfest, W.S.; Hubschman, J.-P.; Brown, E.R. Assessment of Corneal Hydration Sensing in the Terahertz Band: In Vivo Results at 100 GHz. J. Biomed. Opt. 2012, 17, 097008. [Google Scholar] [CrossRef]
- Peh, G.S.L.; Ang, H.-P.; Lwin, C.N.; Adnan, K.; George, B.L.; Seah, X.-Y.; Lin, S.-J.; Bhogal, M.; Liu, Y.-C.; Tan, D.T.; et al. Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy. Sci. Rep. 2017, 7, 14149. [Google Scholar] [CrossRef] [PubMed]
- Hay, J. The Biomechanics of Sports Techniques; Prentice-Hall: Upper Saddle River, NJ, USA, 1978; ISBN 0-13-084534-5. [Google Scholar]
- Garcia-Porta, N.; Fernandes, P.; Queiros, A.; Salgado-Borges, J.; Parafita-Mato, M.; González-Méijome, J.M. Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques. Int. Sch. Res. Not. 2014, 2014, 724546. [Google Scholar] [CrossRef]
- Teo, A.W.J.; Mansoor, H.; Sim, N.; Lin, M.T.-Y.; Liu, Y.-C. In Vivo Confocal Microscopy Evaluation in Patients with Keratoconus. J. Clin. Med. 2022, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.; Piñero, D.; Shabayek, M.H.; Arnalich-Montiel, F.; Alió, J.L. Corneal Biomechanical Properties in Normal, Post-Laser in Situ Keratomileusis, and Keratoconic Eyes. J. Cataract. Refract. Surg. 2007, 33, 1371. [Google Scholar] [CrossRef] [PubMed]
- Loveless, B.A.; Moin, K.A.; Hoopes, P.C.; Moshirfar, M. The Utilization of Brillouin Microscopy in Corneal Diagnostics: A Systematic Review. Cureus 2024, 16, e65769. [Google Scholar] [CrossRef]
- Dupps, W.J.; Netto, M.V.; Herekar, S.; Krueger, R.R. Surface Wave Elastometry of the Cornea in Porcine and Human Donor Eyes. J. Refract. Surg. 2007, 23, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, X.; Pan, X.; Roberts, C.J. Ultrasonic Model and System for Measurement of Corneal Biomechanical Properties and Validation on Phantoms. J. Biomech. 2007, 40, 1177–1182. [Google Scholar] [CrossRef]
- Tanter, M.; Touboul, D.; Gennisson, J.-L.; Bercoff, J.; Fink, M. High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. IEEE Trans. Med. Imaging 2009, 28, 1881–1893. [Google Scholar] [CrossRef]
- Koprowski, R. Automatic Method of Analysis and Measurement of Additional Parameters of Corneal Deformation in the Corvis Tonometer. Biomed. Eng. Online 2014, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Marcos, S. Contributing Factors to Corneal Deformation in Air Puff Measurements. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5078–5085. [Google Scholar] [CrossRef] [PubMed]
- Bak-Nielsen, S.; Pedersen, I.B.; Ivarsen, A.; Hjortdal, J. Repeatability, Reproducibility, and Age Dependency of Dynamic Scheimpflug-Based Pneumotonometer and Its Correlation With a Dynamic Bidirectional Pneumotonometry Device. Cornea 2015, 34, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, G.; Hassan, Z.; Csutak, A.; Szalai, E.; Berta, A.; Modis, L. Repeatability of Ocular Biomechanical Data Measurements With a Scheimpflug-Based Noncontact Device on Normal Corneas. J. Refract. Surg. 2013, 29, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.R.; Dupps, W.J.; Rollins, A.M.; Roy, A.S.; Hu, Z. Method for Optical Coherence Elastography of the Cornea. J. Biomed. Opt. 2011, 16, 016005. [Google Scholar] [CrossRef] [PubMed]
- Hollman, K.W.; Emelianov, S.Y.; Neiss, J.H.; Jotyan, G.; Spooner, G.J.R.; Juhasz, T.; Kurtz, R.M.; O’Donnell, M. Strain Imaging of Corneal Tissue with an Ultrasound Elasticity Microscope. Cornea 2002, 21, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Tian, L.; Zhang, H.; Chen, X.; Li, L. Evaluation of Corneal Elastic Modulus Based on Corneal Visualization Scheimpflug Technology. BioMed Eng. OnLine 2019, 18, 42. [Google Scholar] [CrossRef]
- Aloy, M.Á.; Adsuara, J.E.; Cerdá-Durán, P.; Obergaulinger, M.; Esteve-Taboada, J.J.; Ferrer-Blasco, T.; Montés-Micó, R. Estimation of the Mechanical Properties of the Eye through the Study of Its Vibrational Modes. PLoS ONE 2017, 12, e0183892. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.E.; Pye, D.C. Young’s Modulus in Normal Corneas and the Effect on Applanation Tonometry. Optom. Vis. Sci. 2008, 85, 445. [Google Scholar] [CrossRef]
- Meek, K.M.; Fullwood, N.J. Corneal and Scleral Collagens—A Microscopist’s Perspective. Micron 2001, 32, 261–272. [Google Scholar] [CrossRef]
- Last, J.A.; Russell, P.; Nealey, P.F.; Murphy, C.J. The Applications of Atomic Force Microscopy to Vision Science. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6083–6094. [Google Scholar] [CrossRef] [PubMed]
- Salomão, M.Q.; Hofling-Lima, A.L.; Gomes Esporcatte, L.P.; Lopes, B.; Vinciguerra, R.; Vinciguerra, P.; Bühren, J.; Sena, N.; Luz Hilgert, G.S.; Ambrósio, R. The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. Int. J. Environ. Res. Public Health 2020, 17, 2113. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Y.; Pang, R.; Peng, J.; Cao, K.; Wang, N. Corneal Biomechanical Properties and Potential Influencing Factors in Varying Degrees of Myopia. Sci. Rep. 2024, 14, 20626. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Geraghty, B.; Wang, Q.; Elsheikh, A. Consideration of Corneal Biomechanics in the Diagnosis and Management of Keratoconus: Is It Important? Eye Vis. 2016, 3, 18. [Google Scholar] [CrossRef]
- Gezimati, M.; Singh, G. Terahertz Data Extraction and Analysis Based on Deep Learning Techniques for Emerging Applications. IEEE Access 2024, 12, 21174–21198. [Google Scholar] [CrossRef]
Indication | Study Design | Findings |
---|---|---|
Dry eye Disease | Clinical in vivo human THz imaging studies (n = 1 patient) [41] and (n = 29 patients) [42] | • Decrease in THz reflectivity over time before blinking, which returned to baseline levels after blinking [41]. • Significant decrease in THz reflectivity in the inter-blink period for DED patients [42] |
Corneal endothelium functionality | Ex vivo porcine model study utilising THz-TDS spectroscopy [1] | • Significant linear correlation between THz spectral parameters and endothelial cell density [50]. • Area Under Curve value of 0.91 ± 0.12 of a classification model utilising mean THz spectral slopes to diagnose an endothelial cell density <3000 cells/mm2 [50]. |
Corneal Hydration | Ex vivo rabbit [54] and porcine THz imaging studies [56,57] | • Significant increase in corneal THz reflectivity with increasing corneal water concentration [54,56]. • Reduction in THz reflectance from the centre of cornea to edges, which aligns with the higher hydration levels in the corneal center [57]. • Strong linear correlation in THz reflection signal intensity with corresponding CCT measurements [31,32]. • Changes in the corneal reflectivity coefficient corresponded to corneal edema progression [55]. • Hydration sensitivity of THz scanning reported to be 3 ppt suggests sufficiently powered to highlight corneal hydration abnormalities [58]. |
In vivo rabbit THz imaging studies [32,55,58] | ||
Corneal elasticity | Ex vivo human cadaveric corneas using THz spectroscopy (n = 6 corneas) [34] | • THz signal phase shift and refractive index shift were used to determine the Young’s modulus of elasticity for each cornea, and the values were consistent with the standard range for corneal Young’s modulus [34]. |
Corneal scars | Ex vivo rabbit THz imaging and THz spectroscopy [33] | • Significant decrease in refractive index of scar centres compared to control corneal samples, observed via THz refractive index spectra [33]. • Significantly increased THz reflection peak intensity in the scar samples, compared to controls, observed via THz-TDS [33]. • THz imaging contrast sufficiently outlined the laser-induced corneal scars, highlighting its ability to assess corneal scar size [33]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, B.J.; Liu, C.; Yu, M.; Xin Yu Lee, I.; Mehta, J.S.; Wu, Q.Y.S.; Wong Kay Ting, R.; Lin, K.; Liu, Y.-C. The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review. Bioengineering 2025, 12, 45. https://doi.org/10.3390/bioengineering12010045
Chow BJ, Liu C, Yu M, Xin Yu Lee I, Mehta JS, Wu QYS, Wong Kay Ting R, Lin K, Liu Y-C. The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review. Bioengineering. 2025; 12(1):45. https://doi.org/10.3390/bioengineering12010045
Chicago/Turabian StyleChow, Bing Jie, Chang Liu, Mingyi Yu, Isabelle Xin Yu Lee, Jodhbir S. Mehta, Qing Yang Steve Wu, Regina Wong Kay Ting, Ke Lin, and Yu-Chi Liu. 2025. "The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review" Bioengineering 12, no. 1: 45. https://doi.org/10.3390/bioengineering12010045
APA StyleChow, B. J., Liu, C., Yu, M., Xin Yu Lee, I., Mehta, J. S., Wu, Q. Y. S., Wong Kay Ting, R., Lin, K., & Liu, Y.-C. (2025). The Application of Terahertz Technology in Corneas and Corneal Diseases: A Systematic Review. Bioengineering, 12(1), 45. https://doi.org/10.3390/bioengineering12010045