The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Study Design and Setting
2.3. Determination of RA Disease Activity
2.4. Determination of RA Disease Progression
2.5. Sample Collection and Preparation
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Western Blot (WB)
2.8. Statistical Analysis
3. Results
3.1. Serum GRP78/Bip Levels in Different States of RA
3.2. The Differential Expressions of GRP78/BiP in Blood, SF, and Synovium Under Different Disease Activity and Progression of RA
3.3. The Differential Expressions of GRP78/BiP and Caspase-3 Under Different Disease Activity and Progression of RA
3.4. The Differential Expressions of Inflammatory Factor TNF-α and Anti-Inflammatory Factor IL-10 Under Different Disease Activity and Progression of RA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weisenfeld, D.; Zhang, F.; Donlin, L.; Jonsson, A.H.; Apruzzese, W.; Campbell, D.; Rao, D.A.; Wei, K.; Holers, V.M.; Gravallese, E.; et al. Associations Between Rheumatoid Arthritis Clinical Factors and Synovial Cell Types and States. Arthritis Rheumatol. 2024, 76, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.Y.; Chiang, C.C.; Chen, R.Y.; Ni, W.Z.; Weng, Y.Q.; Yeh, Y.T.; Hsu, H.C. Immunosensing for Early Detection of Rheumatoid Arthritis Biomarkers: Anti-Cyclic Citrullinated Peptide Antibodies Based on Tilted-Fiber Bragg Grating Biosensor. Bioengineering 2023, 10, 261. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Garcia, S.; Martinez-Peinado, P.; Lopez-Jaen, A.B.; Navarro-Blasco, F.J.; Montoyo-Pujol, Y.G.; Roche, E.; Peiro, G.; Sempere-Ortells, J.M. Analysis of Novel Immunological Biomarkers Related to Rheumatoid Arthritis Disease Severity. Int. J. Mol. Sci. 2023, 24, 12351. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, G.; Wagner, A.; Meednu, N.; Wang, R.; Zhang, F.; Ekabe, J.C.; Jonsson, A.H.; Wei, K.; Sakaue, S.; Nathan, A.; et al. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat. Commun. 2024, 15, 4991. [Google Scholar] [CrossRef]
- Taylor, P.C. Pain in the joints and beyond; the challenge of rheumatoid arthritis. Lancet Rheumatol. 2023, 5, e351–e360. [Google Scholar] [CrossRef]
- GBD 2021 Gout Collaborators. Global, regional, and national burden of gout, 1990–2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2024, 6, e507–e517. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; Coblyn, J.S.; Fox, D.A.; Fraser, P.A.; Holdsworth, D.E.; Glass, D.N.; Trentham, D.E. Efficacy of low-dose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 1985, 312, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.C.; Szczepanski, L.; Szechinski, J.; Filipowicz-Sosnowska, A.; Emery, P.; Close, D.R.; Stevens, R.M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.J.; Maini, R.N.; Feldmann, M.; Kalden, J.R.; Antoni, C.; Smolen, J.S.; Leeb, B.; Breedveld, F.C.; Macfarlane, J.D.; Bijl, H.; et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 1994, 344, 1105–1110. [Google Scholar] [CrossRef]
- Khader, Y.; Beran, A.; Ghazaleh, S.; Lee-Smith, W.; Altorok, N. Predictors of remission in rheumatoid arthritis patients treated with biologics: A systematic review and meta-analysis. Clin. Rheumatol. 2022, 41, 3615–3627. [Google Scholar] [CrossRef]
- Chaves, C.L.; Salvatierra, O.J.; Raya, A.E. Predictors of response to biologic therapies in rheumatoid arthritis. Reumatol. Clin. 2011, 7, 141–144. [Google Scholar] [CrossRef]
- Brown, P.; Pratt, A.G.; Hyrich, K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024, 384, e070856. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Volkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-Cell Therapy in Autoimmune Disease—A Case Series with Follow-up. N. Engl. J. Med. 2024, 390, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.M.; Thompson, S.J.; Panayi, G.S.; Corrigall, V.M. Pro-resolution immunological networks: Binding immunoglobulin protein and other resolution-associated molecular patterns. Rheumatology 2012, 51, 780–788. [Google Scholar] [CrossRef]
- Bugatti, S.; De Stefano, L.; Gandolfo, S.; Ciccia, F.; Montecucco, C. Autoantibody-negative rheumatoid arthritis: Still a challenge for the rheumatologist. Lancet Rheumatol. 2023, 5, e743–e755. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.F.; Mcdonald, D.; Hulme, G.; Hussain, R.; Coxhead, J.; Swan, D.; Schulz, A.R.; Mei, H.E.; MacDonald, L.; Pratt, A.G.; et al. Single-cell insights into immune dysregulation in rheumatoid arthritis flare versus drug-free remission. Nat. Commun. 2024, 15, 1063. [Google Scholar] [CrossRef]
- van Mulligen, E. Tapering conventional synthetic DMARDs towards sustained drug-free remission in rheumatoid arthritis. Lancet Rheumatol. 2024, 6, e254–e255. [Google Scholar] [CrossRef] [PubMed]
- Goekoop-Ruiterman, Y.P.; Huizinga, T.W. Rheumatoid arthritis: Can we achieve true drug-free remission in patients with RA? Nat. Rev. Rheumatol. 2010, 6, 68–70. [Google Scholar] [CrossRef]
- Amin-Wetzel, N.; Saunders, R.A.; Kamphuis, M.J.; Rato, C.; Preissler, S.; Harding, H.P.; Ron, D. A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response. Cell 2017, 171, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, B.; Chaabo, K.; Hall, C.; Garrood, T.; Mant, T.; Allen, E.; Vincent, A.; Vasconcelos, J.C.; Prevost, A.T.; Panayi, G.S.; et al. Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis. Rheumatology 2016, 55, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, A.O.; Simpson, K.E.; Oyelere, S.F.; Nur, M.; Ngule, C.M.; Owoyemi, B.; Ayarick, V.A.; Oyelami, F.F.; Obaleye, O.; Esoe, D.P.; et al. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: A systematic review. Mol. Med. 2023, 29, 112. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Ha, D.P.; Wang, J.; Xiong, M.; Lee, A.S. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc. Natl. Acad. Sci. USA 2023, 120, e1991519176. [Google Scholar] [CrossRef]
- Blass, S.; Union, A.; Raymackers, J.; Schumann, F.; Ungethum, U.; Muller-Steinbach, S.; De Keyser, F.; Engel, J.M.; Burmester, G.R. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 2001, 44, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Klegeris, A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen. Res. 2021, 16, 423–429. [Google Scholar] [CrossRef]
- Puentes-Osorio, Y.; Amariles, P.; Calleja, M.A.; Merino, V.; Diaz-Coronado, J.C.; Taborda, D. Potential clinical biomarkers in rheumatoid arthritis with an omic approach. Autoimmun. Highlights 2021, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.M.; Panayi, G.S.; Corrigall, V.M. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis? Clin. Exp. Immunol. 2011, 165, 292–300. [Google Scholar] [CrossRef]
- Panayi, G.S.; Corrigall, V.M. Immunoglobulin heavy-chain-binding protein (BiP): A stress protein that has the potential to be a novel therapy for rheumatoid arthritis. Biochem. Soc. Trans. 2014, 42, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Pfaffenbach, K.T.; Lee, A.S. The critical role of GRP78 in physiologic and pathologic stress. Curr. Opin. Cell Biol. 2011, 23, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Elfiky, A.A.; Baghdady, A.M.; Ali, S.A.; Ahmed, M.I. GRP78 targeting: Hitting two birds with a stone. Life Sci. 2020, 260, 118317. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.M.; Abdelmalek, D.H.; Elfiky, A.A. GRP78: A cell’s response to stress. Life Sci. 2019, 226, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Zhang, X. Roles of GRP78 in physiology and cancer. J. Cell. Biochem. 2010, 110, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Zhang, Y.; Lee, A.S. Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 2011, 434, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.M.; Klavinskis, L.S.; Antoniou, M.; Wooley, P.H.; Collins, H.L.; Panayi, G.S.; Thompson, S.J.; Corrigall, V.M. Systemic gene transfer of binding immunoglobulin protein (BiP) prevents disease progression in murine collagen-induced arthritis. Clin. Exp. Immunol. 2015, 179, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, I.; Cohen, M. Linking cell-surface GRP78 to cancer: From basic research to clinical value of GRP78 antibodies. Cancer Lett. 2022, 524, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, W.; Yuan, Y.; Guo, J.; Liang, D.; Zhao, X. Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts. Int. J. Mol. Sci. 2024, 25, 564. [Google Scholar] [CrossRef] [PubMed]
- Blass, S.; Specker, C.; Lakomek, H.J.; Schneider, E.M.; Schwochau, M. Novel 68 kDa autoantigen detected by rheumatoid arthritis specific antibodies. Ann. Rheum. Dis. 1995, 54, 355–360. [Google Scholar] [CrossRef]
- Yoo, S.A.; You, S.; Yoon, H.J.; Kim, D.H.; Kim, H.S.; Lee, K.; Ahn, J.H.; Hwang, D.; Lee, A.S.; Kim, K.J.; et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J. Exp. Med. 2012, 209, 871–886. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Hall, C.; Mcgowan, N.; Babb, R.; Devlia, V.; Lucas, S.; Meghji, S.; Henderson, B.; Bozec, A.; Schett, G.; et al. Binding Immunoglobulin Protein (BIP) Inhibits TNF-alpha-Induced Osteoclast Differentiation and Systemic Bone Loss in an Erosive Arthritis Model. ACR Open Rheumatol. 2019, 1, 382–393. [Google Scholar] [CrossRef]
- Yoshida, K.; Ochiai, A.; Matsuno, H.; Panayi, G.S.; Corrigall, V.M. Binding immunoglobulin protein resolves rheumatoid synovitis: A xenogeneic study using rheumatoid arthritis synovial membrane transplants in SCID mice. Arthritis Res. Ther. 2011, 13, R149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ge, L.; Song, G.; Zhang, R.; Li, S.; Shi, H.; Zhang, H.; Li, Y.; Pan, J.; Wang, L.; et al. Azithromycin alleviates the severity of rheumatoid arthritis by targeting the unfolded protein response component of glucose-regulated protein 78 (GRP78). Br. J. Pharmacol. 2022, 179, 1201–1219. [Google Scholar] [CrossRef]
- Giusti, L.; Baldini, C.; Ciregia, F.; Giannaccini, G.; Giacomelli, C.; De Feo, F.; Delle, S.A.; Riente, L.; Lucacchini, A.; Bazzichi, L.; et al. Is GRP78/BiP a potential salivary biomarker in patients with rheumatoid arthritis? Proteom. Clin. Appl. 2010, 4, 315–324. [Google Scholar] [CrossRef]
- Md, B.S.; Vm, C.; E, B.; Hr, C.; Ag, T.; Cp, M.; C, C.; S, R.D.; Gs, P. Antibody response to the human stress protein BiP in rheumatoid arthritis. Rheumatology 2004, 43, 1283–1287. [Google Scholar]
- Sun, P.; Wang, W.; Chen, L.; Li, N.; Meng, X.; Bian, J.; Yang, J.; Wang, X.; Zhu, W.; Ming, L. Diagnostic value of autoantibodies combined detection for rheumatoid arthritis. J. Clin. Lab. Anal. 2017, 31, e22086. [Google Scholar] [CrossRef] [PubMed]
- Corrigall, V.M.; Bodman-Smith, M.D.; Fife, M.S.; Canas, B.; Myers, L.K.; Wooley, P.; Soh, C.; Staines, N.A.; Pappin, D.J.; Berlo, S.E.; et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J. Immunol. 2001, 166, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Shoda, H.; Fujio, K.; Shibuya, M.; Okamura, T.; Sumitomo, S.; Okamoto, A.; Sawada, T.; Yamamoto, K. Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis. Arthritis Res. Ther. 2011, 13, R191. [Google Scholar] [CrossRef] [PubMed]
- Brownlie, R.J.; Myers, L.K.; Wooley, P.H.; Corrigall, V.M.; Bodman-Smith, M.D.; Panayi, G.S.; Thompson, S.J. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: A novel function for an ancient protein. Arthritis Rheum. 2006, 54, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.K.; Haslbeck, M.; Englbrecht, M.; Sehnert, B.; Mielenz, D.; Graef, D.; Distler, J.H.; Mueller, R.B.; Burkhardt, H.; Schett, G.; et al. Antibodies to the endoplasmic reticulum-resident chaperones calnexin, BiP and Grp94 in patients with rheumatoid arthritis and systemic lupus erythematosus. Rheumatology 2010, 49, 2255–2263. [Google Scholar] [CrossRef]
- Lu, M.C.; Lai, N.S.; Yin, W.Y.; Yu, H.C.; Huang, H.B.; Tung, C.H.; Huang, K.Y.; Yu, C.L. Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells. J. Clin. Immunol. 2013, 33, 558–566. [Google Scholar] [CrossRef]
- Bodman-Smith, M.D.; Corrigall, V.M.; Kemeny, D.M.; Panayi, G.S. BiP, a putative autoantigen in rheumatoid arthritis, stimulates IL-10-producing CD8-positive T cells from normal individuals. Rheumatology 2003, 42, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Shoda, H.; Hanata, N.; Sumitomo, S.; Okamura, T.; Fujio, K.; Yamamoto, K. Immune responses to Mycobacterial heat shock protein 70 accompany self-reactivity to human BiP in rheumatoid arthritis. Sci. Rep. 2016, 6, 22486. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.C.; Lai, P.H.; Lai, N.S.; Huang, H.B.; Koo, M.; Lu, M.C. Increased Serum Levels of Anti-Carbamylated 78-kDa Glucose-Regulated Protein Antibody in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2016, 17, 1510. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, X.; Feng, Y.; Fan, C.; Chen, Z.; Zhu, P. The differential expressions of 78-kDa glucose-regulated protein of infiltrating plasma cells in peripheral joints with the histopathological variants of rheumatoid synovitis. Arthritis Res. Ther. 2009, 11, R4. [Google Scholar] [CrossRef] [PubMed]
- Corrigall, V.M.; Bodman-Smith, M.D.; Brunst, M.; Cornell, H.; Panayi, G.S. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: Relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 2004, 50, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Michael, B.; Mariaselvam, C.M.; Kavadichanda, C.G.; Negi, V.S. Synovial-fluid-derived microparticles express vimentin and GRP78 in their surface and exhibit an in vitro stimulatory effect on fibroblast-like synoviocytes in rheumatoid arthritis. Int. J. Rheum. Dis. 2023, 26, 2183–2194. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.R.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020, 72, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.P.; Fox, J.M.; Del, P.W.; Friedman, M.J.; Snyder, S.J.; Ferkel, R.D. Accuracy of diagnoses from magnetic resonance imaging of the knee. A multi-center analysis of one thousand and fourteen patients. J. Bone Jt. Surg. Am. 1991, 73, 2–10. [Google Scholar] [CrossRef]
- Steinbrocker, O.; Traeger, C.H.; Batterman, R.C. Therapeutic criteria in rheumatoid arthritis. J. Am. Med. Assoc. 1949, 140, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Verschueren, P.; Van Hoovels, L.; Studenic, P.; Bossuyt, X. Classification of rheumatoid arthritis: Is it time to revise the criteria? RMD Open 2024, 10, e003851. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Shen, G.; Lei, P. Diagnostic value of BiP or anti-BiP antibodies for rheumatoid arthritis: A meta-analysis. Clin. Exp. Rheumatol. 2018, 36, 405–411. [Google Scholar]
- Savvateeva, E.; Smoldovskaya, O.; Feyzkhanova, G.; Rubina, A. Multiple biomarker approach for the diagnosis and therapy of rheumatoid arthritis. Crit. Rev. Clin. Lab. Sci. 2021, 58, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, H.; Garg, V.; Singh, G. Biomarker Approach Towards Rheumatoid Arthritis Treatment. Curr. Rheumatol. Rev. 2021, 17, 162–175. [Google Scholar] [CrossRef]
- Zhang, F.; Jonsson, A.H.; Nathan, A.; Millard, N.; Curtis, M.; Xiao, Q.; Gutierrez-Arcelus, M.; Apruzzese, W.; Watts, G.; Weisenfeld, D.; et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 2023, 623, 616–624. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. The immunology of rheumatoid arthritis. Nat. Immunol. 2021, 22, 10–18. [Google Scholar] [CrossRef]
- Shields, A.M.; Panayi, G.S.; Corrigall, V.M. A New-Age for Biologic Therapies: Long-Term Drug-Free Therapy with BiP? Front. Immunol. 2012, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Eggleton, P.; De Alba, J.; Weinreich, M.; Calias, P.; Foulkes, R.; Corrigall, V.M. The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J. Cell. Mol. Med. 2023, 27, 322–339. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gronow, M.; Pizzo, S.V. Physiological Roles of the Autoantibodies to the 78-Kilodalton Glucose-Regulated Protein (GRP78) in Cancer and Autoimmune Diseases. Biomedicines 2022, 10, 1222. [Google Scholar] [CrossRef] [PubMed]
- Pobre, K.; Poet, G.J.; Hendershot, L.M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J. Biol. Chem. 2019, 294, 2098–2108. [Google Scholar] [CrossRef]
- Kopp, M.C.; Nowak, P.R.; Larburu, N.; Adams, C.J.; Ali, M.M. In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress. eLife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, M.; Yang, Z.; Liu, D.; Ma, B.; Zhao, Y.; Chen, Y.; Hu, Y. Recent advances in small molecule and peptide inhibitors of glucose-regulated protein 78 for cancer therapy. Eur. J. Med. Chem. 2023, 261, 115792. [Google Scholar] [CrossRef]
- Davis, L.S. BiP, From Putting Out Fires to Fanning the Flames in Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 67, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
Stages | Items |
---|---|
Stage I (Early-stage) | * 1. No destructive changes roentgenologically. 2. Roentenologic evidence of osteoporosis may be present. |
Stage II (Moderate-stage) | * 1 Roentgenologic evidence of osteoporosis, with or without slight subchondral bone destruction; slight cartilage destruction may be present. * 2. No joint deformities, although limitation of joint mobility may be present. 3. Adjacent muscle atrophy. 4. Extra-articular soft tissue lesions, such as nodules and tenovaginitis, may be present. |
Stage III (Severe-stage) | * 1. Roentgenologic evidence of cartilage and bone destruction, in addition to osteoporosis. * 2. Joint deformity, such as subluxation, ulnar deviation or hyperextension, without fibrous or bony ankylosis. 3. Extensive muscle atrophy. 4. Extra-articular soft tissue lesions, such as nodules and tenovaginitis, may be present. |
Stage IV (Terminal-stage) | * 1. Fibrous or bony ankylosis. 2. Criteria of stage III. |
States | Cases | Serum GRP78/Bip |
---|---|---|
Conditions of RA | ||
CON | 16 | 909.62 (652.43, 1072.09) |
iCON | 16 | 775.36 (592.86, 1101.04) |
RA | 1605.54 (1081.84, 2239.68) ab | |
χ2-value | 27.132 | |
p-value | <0.001 | |
Statuses of RA | ||
Disease remission | 48 | 1272.28 (1024.13, 1826.40) ab |
Disease activity | 48 | 1913.08 (1298.23, 2831.98) abc |
Z-value | −3.411 | |
p-value | 0.001 | |
Stages of RA (disease remission status) | ||
early-stage | 16 | 1062.73 (1014.98, 1141.36) |
moderate-stage | 16 | 1272.27 (1137.50, 1554.30) A |
severe-stage | 16 | 1634.72 (1419.49, 1914.95) AB |
χ2-value | 7.066 | |
p-value | 0.029 | |
Stages of RA (disease activity status) | ||
early-stage | 16 | 1511.95 (1225.85, 1710.79) |
moderate-stage | 16 | 1945.29 (1795.40, 2128.20) A |
severe-stage | 16 | 2766.86 (2002.97, 3117.49) AB |
χ2-value | 8.956 | |
p-value | 0.011 |
States | Cases | Serum GRP78/Bip | SF GRP78/Bip | Synovium GRP78/Bip |
---|---|---|---|---|
Conditions of RA | ||||
CON | 3 | 859.55 ± 50.30 | 170.74 ± 57.67 | 419.13 ± 78.82 |
iCON | 3 | 810.93 ± 54.35 | 244.86 ± 70.11 | 1017.88 ± 249.58 |
RA | 18 | 1726.85 ± 537.09 ab | 924.60 ± 376.90 ab | 3476.43 ± 1239.18 ab |
F-value | 7.650 | 10.021 | 13.911 | |
p-value | 0.003 | 0.001 | <0.001 | |
Statuses of RA | ||||
Disease remission | 9 | 1360.28 ± 247.75 ab | 1171.94 ± 362.71 ab | 2646.48 ± 735.74 ab |
Disease activity | 9 | 2093.41 ± 499.27 abc | 677.27 ± 180.72 abc | 4306.37 ± 1082.57 abc |
F-value | 15.572 | 13.411 | 14.473 | |
p-value | 0.001 | 0.002 | 0.002 | |
Stages of RA (disease remission status) | ||||
early-stage | 6 | 1073.55 ± 49.98 | 1455.30 ± 168.45 | 2107.61 ± 341.93 |
moderate-stage | 6 | 1372.14 ± 76.17 A | 1330.56 ± 178.23 | 2335.13 ± 452.87 |
severe-stage | 6 | 1635.14 ± 19.23 AB | 729.96 ± 121.99 AB | 3496.72 ± 421.79 AB |
F-value | 81.958 | 18.042 | 9.994 | |
p-value | <0.001 | 0.012 | 0.003 | |
Stages of RA (disease activity status) | ||||
early-stage | 6 | 1569.17 ± 81.94 | 831.60 ± 144.65 | 3089.56 ± 456.12 |
moderate-stage | 6 | 2016.92 ± 65.42 A | 716.10 ± 122.01 | 4406.81 ± 438.31 A |
severe-stage | 6 | 2694.15 ± 154.10 AB | 484.11 ± 29.61 AB | 5422.73 ± 426.90 AB |
F-value | 83.105 | 7.683 | 21.147 | |
p-value | <0.001 | 0.022 | 0.002 |
States | Synovium | SF | |
---|---|---|---|
GRP78/Bip | Caspase-3 | GRP78/Bip | |
Conditions of RA | |||
CON | 1.91 ± 0.11 | 1.42 ± 0.09 | 1.30 ± 0.10 |
iCON | 2.15 ± 0.12 | 1.56 ± 0.08 | 2.99 ± 0.14 a |
RA | 5.79 ± 1.46 ab | 2.98 ± 0.91 ab | 3.96 ± 2.03 a |
F-value | 18.376 | 7.512 | 2.867 |
p-value | <0.001 | 0.003 | 0.079 |
Statuses of RA | |||
Disease remission | 4.60 ± 1.02 ab | 2.39 ± 0.70 ab | 4.36 ± 2.46 a |
Disease activity | 6.98 ± 0.56 abc | 3.57 ± 0.70 abc | 3.55 ± 1.53 a |
F-value | 54.472 | 13.788 | 2.197 |
p-value | <0.001 | <0.001 | 0.120 |
Stages of RA (disease remission status) | |||
early-stage | 3.37 ± 0.10 | 1.47 ± 0.10 | 5.97 ± 0.16 |
moderate-stage | 4.72 ± 0.13 A | 2.83 ± 0.07 A | 6.03 ± 0.10 |
severe-stage | 5.71 ± 0.12 AB | 2.88 ± 0.13 A | 1.09 ± 0.10 AB |
F-value | 305.340 | 187.301 | 1593.076 |
p-value | <0.001 | <0.001 | <0.001 |
Stages of RA (disease activity status) | |||
early-stage | 6.83 ± 0.13 | 2.66 ± 0.12 | 5.51 ± 0.09 |
moderate-stage | 6.43 ± 0.12 | 4.18 ± 0.12 A | 3.06 ± 0.05 A |
severe-stage | 7.67 ± 0.13 AB | 3.86 ± 0.11 A | 2.08 ± 0.13 AB |
F-value | 76.103 | 145.204 | 853.964 |
p-value | <0.001 | <0.001 | <0.001 |
States | Cases | Serum TNF-α | SF TNF-α | Synovium TNF-α |
---|---|---|---|---|
Conditions of RA | ||||
CON | 3 | 14.70 ± 3.44 | 5.25 ± 1.32 | 44.20 ± 7.28 |
iCON | 3 | 24.47 ± 5.76 | 28.22 ± 4.79 a | 91.50 ± 19.25 |
RA | 63.40 ± 16.76 ab | 53.49± 13.56 ab | 322.24 ± 120.37 ab | |
F-value | 18.953 | 22.719 | 12.515 | |
p-value | <0.001 | <0.001 | <0.001 | |
Statuses of RA | ||||
Disease remission | 9 | 54.97 ± 12.83 ab | 45.95 ± 12.38 ab | 247.42 ± 100.76 ab |
Disease activity | 9 | 71.83 ± 16.51 abc | 61.03 ± 10.47 abc | 397.06 ± 89.67 abc |
F-value | 5.853 | 7.784 | 11.077 | |
p-value | 0.028 | 0.013 | 0.004 | |
Stages of RA (disease remission status) | ||||
early-stage | 6 | 40.77 ± 3.99 | 32.81 ± 5.95 | 126.47 ± 21.65 |
moderate-stage | 6 | 55.90 ± 5.10 | 45.94 ± 5.40 A | 267.13 ± 29.21 A |
severe-stage | 6 | 68.25 ± 6.97 AB | 59.11 ± 5.43 AB | 348.67 ± 37.21 AB |
F-value | 13.688 | 13.889 | 39.572 | |
p-value | 0.006 | 0.006 | <0.001 | |
Stages of RA (disease activity status) | ||||
early-stage | 6 | 53.00 ± 5.22 | 49.17 ± 4.04 | 288.17 ± 32.90 |
moderate-stage | 6 | 75.60 ± 11.17 A | 62.35 ± 5.14 A | 433.33 ± 39.33 A |
severe-stage | 6 | 86.90 ± 6.63 AB | 71.58 ± 3.90 A | 469.67 ± 43.16 A |
F-value | 18.878 | 19.675 | 18.474 | |
p-value | 0.003 | 0.002 | <0.001 |
States | Cases | Serum IL-10 | SF IL-10 | Synovium IL-10 |
---|---|---|---|---|
Conditions of RA | ||||
CON | 3 | 7.09 ± 1.11 | 3.92 ± 0.72 | 55.80 ± 7.66 |
iCON | 3 | 31.19 ± 3.52 a | 9.06 ± 1.95 | 162.01 ± 21.23 |
RA | 57.12 ± 15.75 ab | 23.57 ± 7.64 ab | 414.00 ± 122.37 ab | |
F-value | 18.215 | 14.161 | 17.904 | |
p-value | <0.001 | <0.001 | <0.001 | |
Statuses of RA | ||||
Disease remission | 9 | 46.32 ± 10.16 ab | 27.87 ± 8.06 ab | 327.00 ± 89.44 ab |
Disease activity | 9 | 67.92 ± 12.70 abc | 19.27 ± 4.19 abc | 501.00 ± 82.42 abc |
F-value | 15.862 | 8.060 | 18.422 | |
p-value | 0.001 | 0.012 | 0.001 | |
Stages of RA (disease remission status) | ||||
early-stage | 6 | 35.45 ± 4.63 | 20.27 ± 3.79 | 234.01 ± 26.50 |
moderate-stage | 6 | 46.79 ± 5.23 | 26.60 ± 3.80 | 315.02 ± 23.93 A |
severe-stage | 6 | 56.72 ± 4.96 AB | 36.73 ± 4.93 AB | 432.02 ± 31.53 AB |
F-value | 13.896 | 11.684 | 39.319 | |
p-value | 0.006 | 0.009 | <0.001 | |
Stages of RA (disease activity status) | ||||
early-stage | 6 | 53.88 ± 5.67 | 17.27 ± 3.51 | 404.99 ± 32.61 |
moderate-stage | 6 | 68.06 ± 4.99 A | 17.73 ± 3.67 | 522.04 ± 38.30 A |
severe-stage | 6 | 81.81 ± 1.80 AB | 22.80 ± 4.03 | 576.05 ± 41.40 A |
F-value | 29.108 | 2.019 | 16.197 | |
p-value | 0.001 | 0.214 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wu, J.; Wang, Y.; Xu, Y.; Xu, C.; Fang, G.; Li, X.; Chen, J. The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering 2025, 12, 58. https://doi.org/10.3390/bioengineering12010058
Liu G, Wu J, Wang Y, Xu Y, Xu C, Fang G, Li X, Chen J. The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering. 2025; 12(1):58. https://doi.org/10.3390/bioengineering12010058
Chicago/Turabian StyleLiu, Guoyin, Jianping Wu, Yongqiang Wang, Yuansheng Xu, Chun Xu, Guilin Fang, Xin Li, and Jianmin Chen. 2025. "The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis" Bioengineering 12, no. 1: 58. https://doi.org/10.3390/bioengineering12010058
APA StyleLiu, G., Wu, J., Wang, Y., Xu, Y., Xu, C., Fang, G., Li, X., & Chen, J. (2025). The Differential Expressions and Associations of Intracellular and Extracellular GRP78/Bip with Disease Activity and Progression in Rheumatoid Arthritis. Bioengineering, 12(1), 58. https://doi.org/10.3390/bioengineering12010058