Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Segmentation
2.3. Radiomics Features Extraction
2.4. Statistical Analysis and Modeling
3. Results
3.1. Patients
3.2. Features Altered by Image Reconstruction
3.3. Tumor Grade Prediction Models
3.3.1. Feature Selection
3.3.2. SVM Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khanna, L.; Prasad, S.R.; Sunnapwar, A.; Kondapaneni, S.; Dasyam, A.; Tammisetti, V.S.; Salman, U.; Nazarullah, A.; Katabathina, V.S. Pancreatic Neuroendocrine Neoplasms: 2020 Update on Pathologic and Imaging Findings and Classification. RadioGraphics 2020, 40, 1240–1262. [Google Scholar] [CrossRef]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.D. WHO Classification of Tumours of the Digestive System; WHO: Geneva, Switzerland, 2010; ISBN 978-92-832-2432-7. [Google Scholar]
- Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs; WHO: Geneva, Switzerland, 2017; ISBN 978-92-832-4493-6. [Google Scholar]
- Howe, J.R.; Merchant, N.B.; Conrad, C.; Keutgen, X.M.; Hallet, J.; Drebin, J.A.; Minter, R.M.; Lairmore, T.C.; Tseng, J.F.; Zeh, H.J.; et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas 2020, 49, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; Sirlin, C.B.; Ooi, C.; Adler, A.S.; Gollub, J.; Chen, X.; Chan, B.K.; Matcuk, G.R.; Barry, C.T.; Chang, H.Y.; et al. Decoding Global Gene Expression Programs in Liver Cancer by Noninvasive Imaging. Nat. Biotechnol. 2007, 25, 675–680. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Gillies, R.J.; Schabath, M.B. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2556–2567. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.C.; Park, S.; Kawamoto, S.; Yuille, A.L.; Hruban, R.H.; Fishman, E.K. Current Status of Radiomics and Deep Learning in Liver Imaging. J. Comput. Assist. Tomogr. 2021, 45, 343. [Google Scholar] [CrossRef]
- Chu, L.C.; Fishman, E.K. Artificial Intelligence Outperforms Radiologists for Pancreatic Cancer Lymph Node Metastasis Prediction at CT. Radiology 2023, 306, 170–171. [Google Scholar] [CrossRef]
- Gu, D.; Hu, Y.; Ding, H.; Wei, J.; Chen, K.; Liu, H.; Zeng, M.; Tian, J. CT Radiomics May Predict the Grade of Pancreatic Neuroendocrine Tumors: A Multicenter Study. Eur. Radiol. 2019, 29, 6880–6890. [Google Scholar] [CrossRef]
- Bian, Y.; Zhao, Z.; Jiang, H.; Fang, X.; Li, J.; Cao, K.; Ma, C.; Guo, S.; Wang, L.; Jin, G.; et al. Noncontrast Radiomics Approach for Predicting Grades of Nonfunctional Pancreatic Neuroendocrine Tumors. J. Magn. Reson. Imaging 2020, 52, 1124–1136. [Google Scholar] [CrossRef]
- Bian, Y.; Jiang, H.; Ma, C.; Wang, L.; Zheng, J.; Jin, G.; Lu, J. CT-Based Radiomics Score for Distinguishing Between Grade 1 and Grade 2 Nonfunctioning Pancreatic Neuroendocrine Tumors. Am. J. Roentgenol. 2020, 215, 852–863. [Google Scholar] [CrossRef]
- Marusyk, A.; Almendro, V.; Polyak, K. Intra-Tumour Heterogeneity: A Looking Glass for Cancer? Nat. Rev. Cancer 2012, 12, 323–334. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and Deep Learning Methods for Radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef] [PubMed]
- Midya, A.; Chakraborty, J.; Gönen, M.; Do, R.K.G..; Simpson, A.L. Influence of CT Acquisition and Reconstruction Parameters on Radiomic Feature Reproducibility. J. Med. Imaging 2018, 5, 011020. [Google Scholar] [CrossRef]
- Du, D.; Lv, W.; Lv, J.; Chen, X.; Wu, H.; Rahmim, A.; Lu, L. Deep Learning–Based Harmonization of CT Reconstruction Kernels towards Improved Clinical Task Performance. Eur. Radiol. 2023, 33, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.; Lee, S.M.; Do, K.-H.; Lee, G.; Lee, J.-G.; Lee, S.M.; Seo, J.B. Deep Learning–Based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019, 292, 365–373. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Fortin, J.-P.; Cullen, N.; Sheline, Y.I.; Taylor, W.D.; Aselcioglu, I.; Cook, P.A.; Adams, P.; Cooper, C.; Fava, M.; McGrath, P.J.; et al. Harmonization of Cortical Thickness Measurements across Scanners and Sites. NeuroImage 2018, 167, 104–120. [Google Scholar] [CrossRef]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.-S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef]
- Da-ano, R.; Masson, I.; Lucia, F.; Doré, M.; Robin, P.; Alfieri, J.; Rousseau, C.; Mervoyer, A.; Reinhold, C.; Castelli, J.; et al. Performance Comparison of Modified ComBat for Harmonization of Radiomic Features for Multicenter Studies. Sci. Rep. 2020, 10, 10248. [Google Scholar] [CrossRef]
- Rindi, G.; Klimstra, D.S.; Abedi-Ardekani, B.; Asa, S.L.; Bosman, F.T.; Brambilla, E.; Busam, K.J.; de Krijger, R.R.; Dietel, M.; El-Naggar, A.K.; et al. A Common Classification Framework for Neuroendocrine Neoplasms: An International Agency for Research on Cancer (IARC) and World Health Organization (WHO) Expert Consensus Proposal. Mod. Pathol. 2018, 31, 1770–1786. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. NeuroImage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Whybra, P.; Zwanenburg, A.; Andrearczyk, V.; Schaer, R.; Apte, A.P.; Ayotte, A.; Baheti, B.; Bakas, S.; Bettinelli, A.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Convolutional Filters for Quantitative Radiomics Authors and Affiliations. Radiology 2024, 310, e231319. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-Learn: Machine Learning in Python 2018. arXiv 2018, arXiv:1201.0490. [Google Scholar]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Platt, J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Erdal, B.S.; Demirer, M.; Little, K.J.; Amadi, C.C.; Ibrahim, G.F.M.; O’Donnell, T.P.; Grimmer, R.; Gupta, V.; Prevedello, L.M.; White, R.D. Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters? PLoS ONE 2020, 15, e0240184. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; Rest, C.C.L.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.-P.; Corcos, L.; Visvikis, D. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef]
- Zhao, B.; Tan, Y.; Tsai, W.-Y.; Qi, J.; Xie, C.; Lu, L.; Schwartz, L.H. Reproducibility of Radiomics for Deciphering Tumor Phenotype with Imaging. Sci. Rep. 2016, 6, 23428. [Google Scholar] [CrossRef]
- Lopez-Ramirez, F.; Soleimani, S.; Azadi, J.R.; Sheth, S.; Kawamoto, S.; Javed, A.A.; Tixier, F.; Hruban, R.H.; Fishman, E.K.; Chu, L.C. Radiomics Machine Learning Algorithm Facilitates Detection of Small Pancreatic Neuroendocrine Tumors on CT. Diagn. Interv. Imaging 2024, 106, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.A.; Ibrahim, A.; Woodruff, H.C.; Andrearczyk, V.; Müller, H.; Primakov, S.; Salahuddin, Z.; Chatterjee, A.; Lambin, P. Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. J. Pers. Med. 2021, 11, 842. [Google Scholar] [CrossRef]
- Tixier, F.; Jaouen, V.; Hognon, C.; Gallinato, O.; Colin, T.; Visvikis, D. Evaluation of Conventional and Deep Learning Based Image Harmonization Methods in Radiomics Studies. Phys. Med. Biol. 2021, 66, 245009. [Google Scholar] [CrossRef]
- Zhao, Z.; Bian, Y.; Jiang, H.; Fang, X.; Li, J.; Cao, K.; Ma, C.; Wang, L.; Zheng, J.; Yue, X.; et al. CT-Radiomic Approach to Predict G1/2 Nonfunctional Pancreatic Neuroendocrine Tumor. Acad. Radiol. 2020, 27, e272–e281. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, P.; Tiwari, P.; Madabhushi, A. Co-Occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A New Radiomics Descriptor. Sci. Rep. 2016, 6, 37241. [Google Scholar] [CrossRef]
- Park, Y.-J.; Park, Y.S.; Kim, S.T.; Hyun, S.H. A Machine Learning Approach Using [18F]FDG PET-Based Radiomics for Prediction of Tumor Grade and Prognosis in Pancreatic Neuroendocrine Tumor. Mol. Imaging Biol. 2023, 25, 897–910. [Google Scholar] [CrossRef]
- Bian, Y.; Li, J.; Cao, K.; Fang, X.; Jiang, H.; Ma, C.; Jin, G.; Lu, J.; Wang, L. Magnetic Resonance Imaging Radiomic Analysis Can Preoperatively Predict G1 and G2/3 Grades in Patients with NF-pNETs. Abdom. Radiol. 2021, 46, 667–680. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, D.-H.; Tian, X.-F.; Lou, W.-H.; Wang, H.-Z.; Chen, S.; Qiu, Y.-J.; Wang, W.; Dietrich, C.F. Pancreatic Neuroendocrine Tumor: Prediction of Tumor Grades by Radiomics Models Based on Ultrasound Images. Br. J. Radiol. 2023, 96, 20220783. [Google Scholar] [CrossRef]
- Mackin, D.; Ger, R.; Gay, S.; Dodge, C.; Zhang, L.; Yang, J.; Jones, A.K.; Court, L. Matching and Homogenizing Convolution Kernels for Quantitative Studies in Computed Tomography. Investig. Radiol. 2019, 54, 288–295. [Google Scholar] [CrossRef]
- Silva, A.C.; Lawder, H.J.; Hara, A.; Kujak, J.; Pavlicek, W. Innovations in CT Dose Reduction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm. Am. J. Roentgenol. 2010, 194, 191–199. [Google Scholar] [CrossRef]
- Szczykutowicz, T.P.; Toia, G.V.; Dhanantwari, A.; Nett, B. A Review of Deep Learning CT Reconstruction: Concepts, Limitations, and Promise in Clinical Practice. Curr. Radiol. Rep. 2022, 10, 101–115. [Google Scholar] [CrossRef]
- Dunning, C.; Rajendran, K.; Fletcher, J.G.; McCollough, C.H.; Leng, S. Impact of Improved Spatial Resolution on Radiomic Features Using Photon-Counting-Detector CT. Proc. SPIE Int. Soc. Opt. Eng. 2022, 12032, 1203221. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Pal, D.; Abadi, E.; Sauer, T.; Segars, P.; Hsieh, J.; Samei, E. Can Photon-Counting CT Improve Estimation Accuracy of Morphological Radiomics Features? A Simulation Study for Assessing the Quantitative Benefits from Improved Spatial Resolution in Deep Silicon-Based Photon-Counting CT. Acad. Radiol. 2023, 30, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
Training | Testing | All | |||
---|---|---|---|---|---|
Patients | 91 | 36 | 127 | ||
Tumors | 96 | 36 | 132 | ||
Grade | |||||
PanNET | 1 | 58 (60%) | 23 (64%) | 81 (61 %) | |
2 | 34 (35%) | 12 (33%) | 46 (35 %) | ||
3 | 1 (1%) | 0 (0%) | 1 (1 %) | ||
PanNEC | 3 (3%) | 1 (3%) | 4 (3%) | ||
Gender | |||||
Female | 52 (57%) | 17 (47%) | 69 (54%) | ||
Male | 39 (43%) | 19 (53%) | 58 (46%) | ||
Surgery | |||||
Yes | 95 (99%) | 35 (97%) | 130 (98%) | ||
No | 1 (1%) | 1 (3%) | 2 (2%) | ||
Location | |||||
Head | 27 (28%) | 12 (33%) | 39 (30%) | ||
Body | 17 (18%) | 6 (17%) | 23 (17%) | ||
Tail | 47 (49%) | 16 (44%) | 63 (48%) | ||
Neck | 1 (1%) | 1 (3%) | 2 (2%) | ||
Uncinate | 3 (3%) | 1 (3%) | 4 (3%) | ||
Diffuse | 1 (1%) | 0 (0%) | 1 (1%) | ||
Patient with cyst | |||||
Yes | 6 (7%) | 1 (3%) | 7 (6%) | ||
No | 85 (93%) | 35 (97%) | 120 (94%) | ||
BMI | |||||
Underweight (<18.5) | 1 (1%) | 1 (3%) | 2 (2%) | ||
Healthy Weight [18.5–25] | 28 (31%) | 9 (25%) | 37 (29%) | ||
Overweight [25–30] | 35 (39%) | 13 (36%) | 48 (38%) | ||
Obesity [30–40 | 23 (25%) | 12 (33%) | 35 (27%) | ||
Severe Obesity (≥40) | 4 (4%) | 1 (3%) | 5 (4%) | ||
Age | |||||
Median [range] | 61 [23.2–83.4] | 59.6 [21.5–82] | 61.3 [21.5–83.4] | ||
Functional Type | |||||
Nonfunctional | 18 (19%) | 10 (28%) | 28 (21%) | ||
Serotonin | 3 (3%) | 1 (3%) | 4 (3%) | ||
Insulinoma | 6 (6%) | 1 (3%) | 7 (5%) | ||
Unknown | 69 (72%) | 24 (67%) | 93 (70%) | ||
Tumor Focality | |||||
Unifocal | 86 (90%) | 34 (94%) | 120 (91%) | ||
Multifocal | 10 (10%) | 2 (6%) | 12 (9%) |
LASSO | SVM | Accuracy [95% CI] | Sensitivity [95% CI] | Specificity [95% CI] | Precision [95% CI] | F1 Score [95% CI] |
---|---|---|---|---|---|---|
Selection using all features | B20f features selected on B20f | 0.67 [0.50–0.81] | 0.85 [0.63–1.0] | 0.57 [0.36–0.77] | 0.52 [0.30–0.75] | 0.65 [0.43–0.81] |
I26f features selected on B20f | 0.72 [0.58–0.86] | 0.85 [0.62–1.0] | 0.65 [0.45–0.84] | 0.58 [0.35–0.80] | 0.69 [0.48–0.85] | |
B20f features selected on I26f | 0.83 [0.69–0.94] | 1.0 [1.0–1.0] | 0.74 [0.55–0.91] | 0.68 [0.47–0.88] | 0.81 [0.64–0.94] | |
I26f features selected on I26f | 0.81 [0.67–0.92] | 1.0 [1.0–1.0] | 0.70 [0.50–0.88] | 0.65 [0.43–0.85] | 0.79 [0.61–0.92] | |
Selection on harmonizable features | B20f features selected on B20f | 0.67 [0.50–0.81] | 0.69 [0.43–0.92] | 0.65 [0.45–0.84] | 0.53 [0.29–0.77] | 0.60 [0.36–0.79] |
I26f features selected on B20f | 0.72 [0.58–0.86] | 0.92 [0.75–1.0] | 0.61 [0.41–0.81] | 0.57 [0.35–0.78] | 0.71 [0.50–0.86] | |
B20f features selected on I26f | 0.69 [0.56–0.83] | 0.85 [0.63–1.0] | 0.61 [0.41–0.80] | 0.55 [0.33–0.76] | 0.67 [0.45–0.83] | |
I26f features selected on I26f | 0.78 [0.64–0.89] | 0.92 [0.75–1.0] | 0.70 [0.50–0.88] | 0.63 [0.40–0.85] | 0.75 [0.55–0.90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tixier, F.; Lopez-Ramirez, F.; Blanco, A.; Yasrab, M.; Javed, A.A.; Chu, L.C.; Fishman, E.K.; Kawamoto, S. Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms? Bioengineering 2025, 12, 80. https://doi.org/10.3390/bioengineering12010080
Tixier F, Lopez-Ramirez F, Blanco A, Yasrab M, Javed AA, Chu LC, Fishman EK, Kawamoto S. Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms? Bioengineering. 2025; 12(1):80. https://doi.org/10.3390/bioengineering12010080
Chicago/Turabian StyleTixier, Florent, Felipe Lopez-Ramirez, Alejandra Blanco, Mohammad Yasrab, Ammar A. Javed, Linda C. Chu, Elliot K. Fishman, and Satomi Kawamoto. 2025. "Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms?" Bioengineering 12, no. 1: 80. https://doi.org/10.3390/bioengineering12010080
APA StyleTixier, F., Lopez-Ramirez, F., Blanco, A., Yasrab, M., Javed, A. A., Chu, L. C., Fishman, E. K., & Kawamoto, S. (2025). Can CT Image Reconstruction Parameters Impact the Predictive Value of Radiomics Features in Grading Pancreatic Neuroendocrine Neoplasms? Bioengineering, 12(1), 80. https://doi.org/10.3390/bioengineering12010080