A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals
Abstract
:1. Introduction
2. What’s Inside Smartphones?
2.1. Natural Microbe–Metal Interaction: A Focus on Elements Contained in Mobile Phones Layer by Layer
2.1.1. Casing
Bromine
2.1.2. Printed Circuit Board (PCB)
Copper
Gallium and Germanium
Nickel
Gold and Silver
Vanadium, Niobium, Tantalum
2.1.3. Screen
Lanthanides and REEs
2.1.4. Cameras, Speakers, and Vibration Units
Iron
Neodymium
Tungsten
2.1.5. Electrical Connectors
Silicon
Arsenic and Antimony
2.1.6. Battery
Lithium
Cobalt
Manganese
Element | Microorganisms | Element–Microorganism Interaction | References |
---|---|---|---|
Bromine (Br) | Methanogens | Inhibits methanogenesis by competitively binding key enzymes (e.g., methyl coenzyme M methyltransferase). | [25,26] |
Asparagopsis seaweed (source of bromoform) | |||
Copper (Cu) | Many bacteria and archaea | Essential cofactor in redox enzymes (e.g., ammonia monooxygenase). AOA require copper for ammonia oxidation. | [28,29,30,31] |
Ammonia-Oxidizing Archaea, AOA (e.g., Nitrososphaera viennensis) | |||
Gallium (Ga) | Limited microbial studies | Competes with iron in enzymes, disrupting iron-containing proteins (e.g., deoxyribonucleotide reductase). | [32,33,34] |
Germanium (Ge) | Limited microbial studies | No established nutrient function. | [32] |
Nickel (Ni) | Anaerobic bacteria and archaea | Essential in Ni enzymes (urease, Ni-Fe hydrogenase, methyl Co-M reductase). Key for methanogenesis (F430 cofactor). | [35,36] |
Methanogens (e.g., Methanosarcina, Methanobrevibacter) | |||
Gold (Au) | Thermophilic/hyperthermophilic bacteria and archaea (Thermotoga maritima, Pyrobaculum islandicum) | No known biological role; some microorganisms mediate Au solubilization/precipitation. | [37,38,39,40,41] |
Silver (Ag) | Bacteria and archaea (general) | No known biological role: microorganisms can form Ag+ or Ag nanoparticles. | [37,38,40,41] |
Vanadium (V) | Methanosarcina mazei, Methanothermobacter thermautotrophicus | Redox reaction V5+ → V4+ for detoxification or as an electron acceptor. Higher V reduction can inhibit methanogenesis. | [42] |
Niobium (Nb) | No specific microorganisms cited | No known biological role in microorganisms. | [19] |
Tantalum (Ta) | No specific microorganisms cited | No known biological role in microorganisms. | [19] |
Iron (Fe) | Wide range of bacteria and archaea | Essential in heme proteins, Fe-S clusters, FeMo cofactors, and NiFe hydrogenases. | [19,49,50,51] |
Neodymium (Nd) | Methylotrophs (Methylacidimicrobium thermophilum AP8) | Cofactor in XoxF-type methanol dehydrogenases (MDH). At high concentrations, Nd inhibits ammonia-oxidizing bacteria. | [46,52] |
Tungsten (W) | Hyperthermophilic archaea (Wolframiiraptor gerlachensis) | Essential for tungsten-dependent oxidoreductases. Specialized ABC transporters (ModBC, TupABC, WtpABC) import tungstate. | [20,53,54,55] |
Silicon (Si) | Pyrococcus abyssi (hyperthermophile) | Biomineralization (extracellular/intracellular silicification). | [19,56,57,58] |
Bacteria-solubilizing silicates | |||
Arsenic (As) | Arsenite-oxidizing archaea (Sulfolobus acidocaldarius, Aeropyrum pernix K1, Halorubrum sp.) | Redox reaction As3+ → As5+ for energy metabolism, aiding As detoxification. | [36,59,60] |
Antimony (Sb) | Antimony-oxidizing bacteria (no species specified) | Oxidation of Sb3+ → Sb⁵+ for energy metabolism or detoxification. | [60] |
Manganese (Mn) | Photosynthetic bacteria and eukaryotes Methanoperedenaceae | Essential cofactor in various metalloproteins. Anaerobic oxidation of methane (AOM) via Mn4+ reduction. | [72] |
Cobalt (Co) | – Many bacteria and archaea– Rumen bacteria (convert Co salts to cobalamin) | Essential for cobalamin (vitamin B12) production; crucial in methanogenesis (methyltransferase Mtr complex). Presence of Co can stimulate anaerobic digestion in methanogenic cultures. | [69,70,71] |
Lithium (Li) | – Halophiles (e.g., Halovenus, Natronomonas, Haloarcula, Halobacterium) | No confirmed essential role; Li riboswitches regulate cation transporter genes (e.g., nhaA). | [22,64,65,66,67,68] |
– Li riboswitches (bacteria) |
3. Microbial-Based Strategy for Critical Metal Recovery from EoL Mobile Phones
3.1. Overview of Most Recent Bioleaching Studies Applied to Mobile Phones
3.2. Metal Extraction Based on Microbial Consortia
3.2.1. Chemolithotrophic Acidophiles
- Acidolysis and redoxolysis to dissolve base metals such as Cu, Zn, Al, and Ni.
- Some metals do not solubilize at low pH, at which they form insoluble salts [108].
- Acidophilic microorganisms require concentrated acid (H2SO4) and exterior S0 supplementation for their growth because they have optimal activity at a pH range of 2–3, but most e-wastes have an alkaline nature with theoretically zero sulfur content [109].
- Low-pH conditions risk corroding the process equipment and negatively impact the soil if the leachate is discarded in the environment.
3.2.2. Heterotrophic Microorganisms
3.2.3. Archaea (Thermoacidophiles and Methanogens)
- b.
3.3. Biological Recovery of Metals from Leachate Solution
Biosorption
4. Ecodesign as a Strategy for Enhancing the Biotechnological Recovery of Secondary Raw Materials from EoL Mobile Phones
Europe Toward Ecodesign of Mobile Phones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Proske, M.; Winzer, J.; Marwede, M.; Nissen, N.F.; Lang, K.-D. Obsolescence of Electronics-the Example of Smartphones. In Proceedings of the 2016 Electronics Goes Green 2016+ (EGG), Berlin, Germany, 6–9 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–8. [Google Scholar]
- Eurostat. Green ICT-Digital Devices in Households; Eurostat: Luxembourg, 2023. [Google Scholar]
- Mariam AbdEl-Aziz How Smartphones Are Contributing to Climate Change | Infomineo. Available online: https://infomineo.com/technology-telecommunication/how-smartphones-are-contributing-to-climate-change/ (accessed on 25 March 2024).
- Burley, H. The Land and Water Footprints of Everyday Products Mind Your Step; Friends of the Earth: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Lee, P.; Calugar-Pop, C.; Bucaille, A.; Raviprakash, S. Making Smartphones Sustainable: Live Long and Greener. In TMT Predictions 2022. Deloitte 2022, 79–85. [Google Scholar]
- European Commission. Study on the Critical Raw Materials for the EU 2023 Final Report; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- European Commission Infographic—An EU Critical Raw Materials Act for the Future of EU Supply Chains. Available online: https://www.consilium.europa.eu/en/infographics/critical-raw-materials/ (accessed on 24 February 2024).
- Tansel, B. From Electronic Consumer Products to E-Wastes: Global Outlook, Waste Quantities, Recycling Challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Cenci, M.P.; Eidelwein, E.M.; Veit, H.M. Composition and Recycling of Smartphones: A Mini-Review on Gaps and Opportunities. Waste Manag. Res. 2023, 41, 1512–1528. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.F.; Castro, J.P.; Garcia, J.A.; Machado, R.C.; Pereira-Filho, E.R.; Amarasiriwardena, D. Analytical and Reclamation Technologies for Identification and Recycling of Precious Materials from Waste Computer and Mobile Phones. Chemosphere 2022, 286, 131739. [Google Scholar] [CrossRef]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania. Metals 2021, 11, 1313. [Google Scholar] [CrossRef]
- Whitworth, A.J.; Vaughan, J.; Southam, G.; van der Ent, A.; Nkrumah, P.N.; Ma, X.; Parbhakar-Fox, A. Review on Metal Extraction Technologies Suitable for Critical Metal Recovery from Mining and Processing Wastes. Min. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Ali Kucuker, M.; Kuchta, K.; et al. Recent Advances on Hydrometallurgical Recovery of Critical and Precious Elements from End of Life Electronic Wastes—A Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef]
- Sisay Cheru, M. Bio Hydrometallurgical Technology, Application and Process Enhancement. In Heavy Metals—Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021. [Google Scholar]
- Ramírez Calderón, O.A.; Abdeldayem, O.M.; Pugazhendhi, A.; Rene, E.R. Current Updates and Perspectives of Biosorption Technology: An Alternative for the Removal of Heavy Metals from Wastewater. Curr. Pollut. Rep. 2020, 6, 8–27. [Google Scholar] [CrossRef]
- Liapun, V.; Motola, M. Current Overview and Future Perspective in Fungal Biorecovery of Metals from Secondary Sources. J. Environ. Manag. 2023, 332, 117345. [Google Scholar] [CrossRef]
- Bookhagen, B.; Bastian, D.; Buchholz, P.; Faulstich, M.; Opper, C.; Irrgeher, J.; Prohaska, T.; Koeberl, C. Metallic Resources in Smartphones. Resour. Policy 2020, 68, 101750. [Google Scholar] [CrossRef]
- Gómez, M.; Grimes, S.; Qian, Y.; Feng, Y.; Fowler, G. Critical and Strategic Metals in Mobile Phones: A Detailed Characterisation of Multigenerational Waste Mobile Phones and the Economic Drivers for Recovery of Metal Value. J. Clean. Prod. 2023, 419, 138099. [Google Scholar] [CrossRef]
- Remick, K.A.; Helmann, J.D. The Elements of Life: A Biocentric Tour of the Periodic Table. In Advances in Microbial Physiology; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Microbial Metabolism of Metals and Metalloids; Hurst, C.J., Ed.; Springer: Cham, Switzerland, 2022; Volume 10, ISBN 978-3-030-97184-7. [Google Scholar]
- Daumann, L.J. A Natural Lanthanide-Binding Protein Facilitates Separation and Recovery of Rare Earth Elements. ACS Cent. Sci. 2021, 7, 1780–1782. [Google Scholar] [CrossRef]
- White, N.; Sadeeshkumar, H.; Sun, A.; Sudarsan, N.; Breaker, R.R. Lithium-Sensing Riboswitch Classes Regulate Expression of Bacterial Cation Transporter Genes. Sci. Rep. 2022, 12, 19145. [Google Scholar] [CrossRef]
- Bruno, M.; Sotera, L.; Fiore, S. Analysis of the Influence of Mobile Phones’ Material Composition on the Economic Profitability of Their Manual Dismantling. J. Environ. Manag. 2022, 309, 114677. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Duan, H.; Song, Q.; Liu, Y.; Li, Y.; Li, J.; Shen, W.; Luo, J.; Wang, J. Characterization of Brominated Flame Retardants from E-Waste Components in China. Waste Manag. 2017, 68, 498–507. [Google Scholar] [CrossRef]
- Volmer, J.G.; McRae, H.; Morrison, M. The Evolving Role of Methanogenic Archaea in Mammalian Microbiomes. Front. Microbiol. 2023, 14, 1268451. [Google Scholar] [CrossRef]
- Glasson, C.R.K.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and Risks of Including the Bromoform Containing Seaweed Asparagopsis in Feed for the Reduction of Methane Production from Ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Sahajwalla, V.; Hossain, R. Rethinking Circular Economy for Electronics, Energy Storage, and Solar Photovoltaics with Long Product Life Cycles. MRS Bull. 2023, 48, 375–385. [Google Scholar] [CrossRef]
- Giachino, A.; Waldron, K.J. Copper Tolerance in Bacteria Requires the Activation of Multiple Accessory Pathways. Mol. Microbiol. 2020, 114, 377–390. [Google Scholar] [CrossRef]
- Rensing, C.; McDevitt, S.F. The Copper Metallome in Prokaryotic Cells. Met. Cell 2013, 12, 417–450. [Google Scholar]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Occurrence of Copper Proteins through the Three Domains of Life: A Bioinformatic Approach. J. Proteome Res. 2008, 7, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.; Hodgskiss, L.H.; Baars, O.; Kerou, M.; Bayer, B.; Schleper, C.; Kraemer, S.M. Copper Limiting Threshold in the Terrestrial Ammonia Oxidizing Archaeon Nitrososphaera viennensis. Res. Microbiol. 2020, 171, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Trevors, J.T.; Van Dyke, M.I. Microbial Interactions with Germanium. Biotechnol. Adv. 1990, 8, 539–546. [Google Scholar] [CrossRef]
- Chitambar, C.R. Gallium and Its Competing Roles with Iron in Biological Systems. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2016, 1863, 2044–2053. [Google Scholar] [CrossRef]
- Li, F.; Liu, F.; Huang, K.; Yang, S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front. Bioeng. Biotechnol. 2022, 10, 827960. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, S.B.; Hausinger, R.P. Nickel Uptake and Utilization by Microorganisms. FEMS Microbiol. Rev. 2003, 27, 239–261. [Google Scholar] [CrossRef]
- Bini, E. Archaeal Transformation of Metals in the Environment. FEMS Microbiol. Ecol. 2010, 73, 1–16. [Google Scholar] [CrossRef]
- Pradhan, N.; Turner, R.J. Bacterial Production of Metal(Loid) Nanostructures. In Microbial Metabolism of Metals and Metalloids; Springer: Berlin/Heidelberg, Germany, 2022; pp. 167–194. [Google Scholar]
- Banik, A.; Vadivel, M.; Mondal, M.; Sakthivel, N. Molecular Mechanisms That Mediate Microbial Synthesis of Metal Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2022; pp. 135–166. [Google Scholar] [CrossRef]
- Reith, F.; Lengke, M.F.; Falconer, D.; Craw, D.; Southam, G. The Geomicrobiology of Gold. ISME J. 2007, 1, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Sher, N.; Alkhalifah, D.H.M.; Ahmed, M.; Mushtaq, N.; Shah, F.; Fozia, F.; Khan, R.A.; Hozzein, W.N.; Aboul-Soud, M.A.M. Comparative Study of Antimicrobial Activity of Silver, Gold, and Silver/Gold Bimetallic Nanoparticles Synthesized by Green Approach. Molecules 2022, 27, 7895. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an E-Waste Recycling Facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, H.; Zhao, L.; McCarrick, R.; Agrawal, A. Microbial Reduction and Precipitation of Vanadium by Mesophilic and Thermophilic Methanogens. Chem. Geol. 2014, 370, 29–39. [Google Scholar] [CrossRef]
- Featherston, E.R.; Cotruvo, J.A. The Biochemistry of Lanthanide Acquisition, Trafficking, and Utilization. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118864. [Google Scholar] [CrossRef]
- Pol, A.; Barends, T.R.M.; Dietl, A.; Khadem, A.F.; Eygensteyn, J.; Jetten, M.S.M.; Op den Camp, H.J.M. Rare Earth Metals Are Essential for Methanotrophic Life in Volcanic Mudpots. Environ. Microbiol. 2014, 16, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.C.; Featherston, E.R.; Showalter, S.A.; Cotruvo, J.A. Structural Basis for Rare Earth Element Recognition by Methylobacterium extorquens Lanmodulin. Biochemistry 2019, 58, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.A.; Picone, N.; Singer, H.; Dietl, A.; Seifert, K.-A.; Pol, A.; Jetten, M.S.M.; Barends, T.R.M.; Daumann, L.J.; Op Den Camp, H.J.M. Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021, 12, e0170821. [Google Scholar] [CrossRef] [PubMed]
- Mattocks, J.A.; Jung, J.J.; Lin, C.Y.; Dong, Z.; Yennawar, N.H.; Featherston, E.R.; Kang-Yun, C.S.; Hamilton, T.A.; Park, D.M.; Boal, A.K.; et al. Enhanced Rare-Earth Separation with a Metal-Sensitive Lanmodulin Dimer. Nature 2023, 618, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.; Jessika Luth, R.; Jana, R.; Janet, G.; Jef, P.R.; Wouter, S.; Milena, B.; Arianna, C.; Colin, F. Engaging with the General Public on Critical Raw Materials through the Medium of Electronics Repair Workshops. In Proceedings of the Product Lifetimes and the Environment (PLATE) 2019 Conference, Berlin, Germany, 18–20 September 2019; pp. 403–409. [Google Scholar]
- Van Bodegom, P.M.; Scholten, J.C.M.; Stams, A.J.M. Direct Inhibition of Methanogenesis by Ferric Iron. FEMS Microbiol. Ecol. 2004, 49, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Thauer, R.K.; Kaster, A.-K.; Goenrich, M.; Schick, M.; Hiromoto, T.; Shima, S. Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2 Storage. Annu. Rev. Biochem. 2010, 79, 507–536. [Google Scholar] [CrossRef]
- Hedderich, R.; Hamann, N.; Bennati, M. Heterodisulfide Reductase from Methanogenic Archaea: A New Catalytic Role for an Iron-Sulfur Cluster. Biol. Chem. 2005, 386, 961–970. [Google Scholar] [CrossRef]
- Xiong, X.; Li, Y.; Yang, X.; Huang, Z.; Zhou, T.; Wang, D.; Li, Z.; Wang, X. Long-Term Effect of Light Rare Earth Element Neodymium on Anammox Process. Environ. Res. 2023, 235, 116686. [Google Scholar] [CrossRef] [PubMed]
- Hollenstein, K.; Dawson, R.J.; Locher, K.P. Structure and Mechanism of ABC Transporter Proteins. Curr. Opin. Struct. Biol. 2007, 17, 412–418. [Google Scholar] [CrossRef]
- Seelmann, C.S.; Willistein, M.; Heider, J.; Boll, M. Tungstoenzymes: Occurrence, Catalytic Diversity and Cofactor Synthesis. Inorganics 2020, 8, 44. [Google Scholar] [CrossRef]
- Buessecker, S.; Palmer, M.; Lai, D.; Dimapilis, J.; Mayali, X.; Mosier, D.; Jiao, J.-Y.; Colman, D.R.; Keller, L.M.; St. John, E.; et al. An Essential Role for Tungsten in the Ecology and Evolution of a Previously Uncultivated Lineage of Anaerobic, Thermophilic Archaea. Nat. Commun. 2022, 13, 3773. [Google Scholar] [CrossRef] [PubMed]
- Bist, V.; Niranjan, A.; Ranjan, M.; Lehri, A.; Seem, K.; Srivastava, S. Silicon-Solubilizing Media and Its Implication for Characterization of Bacteria to Mitigate Biotic Stress. Front. Plant Sci. 2020, 11, 28. [Google Scholar] [CrossRef]
- Orange, F.; Westall, F.; Disnar, J.R.; Prieur, D.; Bienvenu, N.; Le Romancer, M.; DÉfarge, C. Experimental Silicification of the Extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: Applications in the Search for Evidence of Life in Early Earth and Extraterrestrial Rocks. Geobiology 2009, 7, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T. Bacterial Biosilicification: A New Insight into the Global Silicon Cycle. Biosci. Biotechnol. Biochem. 2021, 85, 1324–1331. [Google Scholar] [CrossRef]
- Abdel Azim, A.; Bellini, R.; Vizzarro, A.; Bassani, I.; Pirri, C.F.; Menin, B. Highlighting the Role of Archaea in Urban Mine Waste Exploitation and Valorisation. Recycling 2023, 8, 20. [Google Scholar] [CrossRef]
- Deng, R.; Chen, Y.; Deng, X.; Huang, Z.; Zhou, S.; Ren, B.; Jin, G.; Hursthouse, A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front. Microbiol. 2021, 12, 738596. [Google Scholar] [CrossRef] [PubMed]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Fu, W.; Wang, Y.; Kong, K.; Kim, D.; Wang, F.; Yushin, G.; Yang, Y.; Fu, W.; Wang, Y.; Kong, K.; et al. Materials and Processing of Lithium-Ion Battery Cathodes. Nanoenergy Adv. 2023, 3, 138–154. [Google Scholar] [CrossRef]
- Mejame, P.P.M.; Jung, D.-Y.; Lee, H.; Lee, D.S.; Lim, S.-R. Effect of Technological Developments for Smartphone Lithium Battery on Metal-Derived Resource Depletion and Toxicity Potentials. Resour. Conserv. Recycl. 2020, 158, 104797. [Google Scholar] [CrossRef]
- Smith, A.M.; Fuchs, R.T.; Grundy, F.J.; Henkin, T.M. Riboswitch RNAs: Regulation of Gene Expression by Direct Monitoring of a Physiological Signal. RNA Biol. 2010, 7, 104. [Google Scholar] [CrossRef]
- White, N.; Sadeeshkumar, H.; Sun, A.; Sudarsan, N.; Breaker, R.R. Na+ Riboswitches Regulate Genes for Diverse Physiological Processes in Bacteria. Nat. Chem. Biol. 2022, 18, 878–885. [Google Scholar] [CrossRef]
- Cubillos, C.F.; Aguilar, P.; Grágeda, M.; Dorador, C. Microbial Communities From the World’s Largest Lithium Reserve, Salar de Atacama, Chile: Life at High LiCl Concentrations. J. Geophys. Res. Biogeosci 2018, 123, 3668–3681. [Google Scholar] [CrossRef]
- Morishita, H.; Takada, H. Sparing Effect of Lithium Ion on the Specific Requirement for Sodium Ion for Growth of Vibrio parahaemolyticus. Can. J. Microbiol. 1976, 22, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, E.; Argüello-Miranda, O.; Chiu, S.W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a Unified Understanding of Lithium Action in Basic Biology and Its Significance for Applied Biology. J. Membr. Biol. 2017, 250, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Paulo, L.M.; Ramiro-Garcia, J.; van Mourik, S.; Stams, A.J.M.; Sousa, D.Z. Effect of Nickel and Cobalt on Methanogenic Enrichment Cultures and Role of Biogenic Sulfide in Metal Toxicity Attenuation. Front. Microbiol. 2017, 8, 1314. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, A.A.; Bobik, T.A.; Wolfe, R.S. Unusual Coenzymes of Methanogenesis. Annu. Rev. Biochem. 1990, 59, 355–394. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Ermler, U.; Shima, S. MtrA of the Sodium Ion Pumping Methyltransferase Binds Cobalamin in a Unique Mode. Sci. Rep. 2016, 6, 28266. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.S.; Schmollinger, S.; Strenkert, D.; Moseley, J.L.; Blaby-Haas, C.E. From Economy to Luxury: Copper Homeostasis in Chlamydomonas and Other Algae. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2020, 1867, 118822. [Google Scholar] [CrossRef]
- Mahajan, S.; Gupta, A.; Sharma, R. Bioleaching and Biomining. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer Singapore: Singapore, 2017; pp. 393–423. [Google Scholar] [CrossRef]
- Levett, A.; Gleeson, S.A.; Kallmeyer, J. From Exploration to Remediation: A Microbial Perspective for Innovation in Mining. Earth Sci. Rev. 2021, 216, 103563. [Google Scholar] [CrossRef]
- Pourhossein, F.; Mousavi, S.M. A Novel Step-Wise Indirect Bioleaching Using Biogenic Ferric Agent for Enhancement Recovery of Valuable Metals from Waste Light Emitting Diode (WLED). J. Hazard. Mater. 2019, 378, 120648. [Google Scholar] [CrossRef] [PubMed]
- Işıldar, A.; van de Vossenberg, J.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N.L. Biorecovery of Metals from Electronic Waste. 2017, 2, 241–278. [CrossRef]
- Rimaszeki, G.; Kulcsar, T.; Kekesi, T. Application of HCl Solutions for Recovering the High Purity Metal from Tin Scrap by Electrorefining. Hydrometallurgy 2012, 125–126, 55–63. [Google Scholar] [CrossRef]
- Narbutt, J. Chapter 4 -Fundamentals of Solvent Extraction of Metal Ions. In Liquid-Phase Extraction; Poole, C.F., Ed.; Handbooks in Separation Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–155. [Google Scholar] [CrossRef]
- Adigun, B.; Thapaliya, B.P.; Luo, H.; Dai, S. Ionic Liquid-Based Extraction of Metal Ions via Polymer Inclusion Membranes: A Critical Review. RSC Sustain. 2024, 2, 2768–2780. [Google Scholar] [CrossRef]
- Hannula, P.-M.; Khalid, M.K.; Janas, D.; Yliniemi, K.; Lundström, M. Energy Efficient Copper Electrowinning and Direct Deposition on Carbon Nanotube Film from Industrial Wastewaters. J. Clean. Prod. 2019, 207, 1033–1039. [Google Scholar] [CrossRef]
- Maleke, M.; Valverde, A.; Vermeulen, J.G.; Cason, E.; Gomez-Arias, A.; Moloantoa, K.; Coetsee-Hugo, L.; Swart, H.; Van Heerden, E.; Castillo, J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front. Microbiol. 2019, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Pagliaccia, B.; Carretti, E.; Severi, M.; Berti, D.; Lubello, C.; Lotti, T. Heavy Metal Biosorption by Extracellular Polymeric Substances (EPS) Recovered from Anammox Granular Sludge. J. Hazard. Mater. 2022, 424, 126661. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Singh, P.; Singh, R.; Bala, S.; Pathak, N.; Singh, S.; Chauhan, R.S.; Singh, P.K. Microbial Biosorbent for Remediation of Dyes and Heavy Metals Pollution: A Green Strategy for Sustainable Environment. Front. Microbiol. 2023, 14, 1168954. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Rautela, R.; Gujjala, L.K.S.; Kundu, D.; Sharma, P.; Tembhare, M.; Kumar, S. A Review on Recovery Processes of Metals from E-Waste: A Green Perspective. Sci. Total Environ. 2023, 859, 160391. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A. Unveiling the Promise of Biosorption for Heavy Metal Removal from Water Sources. Desalination Water Treat 2024, 319, 100523. [Google Scholar] [CrossRef]
- Hedrich, S.; Kinnunen, P.H.-M. Biological Removal and Recovery of Metals from Waste Streams and Process Waters. In Biomining Technologies; Springer: Cham, Switzerland, 2023; pp. 275–293. [Google Scholar]
- Golzar-Ahmadi, M.; Mousavi, S.M. Extraction of Valuable Metals from Discarded AMOLED Displays in Smartphones Using Bacillus foraminis as an Alkali-Tolerant Strain. Waste Manag. 2021, 131, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Pourhossein, F.; Rezaei, O.; Mousavi, S.M.; Beolchini, F. Bioleaching of Critical Metals from Waste OLED Touch Screens Using Adapted Acidophilic Bacteria. J. Environ. Health Sci. Eng. 2021, 19, 893–906. [Google Scholar] [CrossRef]
- Willner, J.; Fornalczyk, A.; Gajda, B.; Saternus, M. Bioleaching of Indium and Tin from Used LCD Panels. Physicochem. Probl. Miner. Process 2018, 54, 639–645. [Google Scholar] [CrossRef]
- Naseri, T.; Beiki, V.; Mousavi, S.M.; Farnaud, S. A Comprehensive Review of Bioleaching Optimization by Statistical Approaches: Recycling Mechanisms, Factors Affecting, Challenges, and Sustainability. RSC Adv. 2023, 13, 23570–23589. [Google Scholar] [CrossRef] [PubMed]
- Benzal, E.; Solé, M.; Lao, C.; Gamisans, X.; Dorado, A.D. Elemental Copper Recovery from E-Wastes Mediated with a Two-Step Bioleaching Process. Waste Biomass Valorization 2020, 11, 5457–5465. [Google Scholar] [CrossRef]
- Arshadi, M.; Yaghmaei, S.; Mousavi, S.M. Optimal Electronic Waste Combination for Maximal Recovery of Cu-Ni-Fe by Acidithiobacillus ferrooxidans. J. Clean. Prod. 2019, 240, 118077. [Google Scholar] [CrossRef]
- Sonawane, P.; Gupta, S.G. Metal Mobilisation from Obsolete PCB of Mobile Phones Using Chemolithotrophs. Ecol. Eng. Environ. Technol. 2021, 22, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Erust, C.; Akcil, A.; Tuncuk, A.; Panda, S. Intensified Acidophilic Bioleaching of Multi-Metals from Waste Printed Circuit Boards (WPCBs) of Spent Mobile Phones. J. Chem. Technol. Biotechnol. 2020, 95, 2272–2285. [Google Scholar] [CrossRef]
- Garg, H.; Nagar, N.; Ellamparuthy, G.; Angadi, S.I.; Gahan, C.S. Bench Scale Microbial Catalysed Leaching of Mobile Phone PCBs with an Increasing Pulp Density. Heliyon 2019, 5, e02883. [Google Scholar] [CrossRef] [PubMed]
- Argumedo-Delira, R.; Gómez-Martínez, M.J.; Soto, B.J. Gold Bioleaching from Printed Circuit Boards of Mobile Phones by Aspergillus niger in a Culture without Agitation and with Glucose as a Carbon Source. Metals 2019, 9, 521. [Google Scholar] [CrossRef]
- Sikander, A.; Kelly, S.; Kuchta, K.; Sievers, A.; Willner, T.; Hursthouse, A.S. Chemical and Microbial Leaching of Valuable Metals from PCBs and Tantalum Capacitors of Spent Mobile Phones. Int. J. Environ. Res. Public Health 2022, 19, 10006. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhang, H.; Yang, W.; Wu, Z.; Liu, W.; Yang, C. Bioleaching Assisted Foam Fractionation for Recovery of Gold from the Printed Circuit Boards of Discarded Cellphone. Waste Manag. 2020, 101, 200–209. [Google Scholar] [CrossRef]
- Khatri, B.R.; Sodha, A.B.; Shah, M.B.; Tipre, D.R.; Dave, S.R. Chemical and Microbial Leaching of Base Metals from Obsolete Cell-Phone Printed Circuit Boards. Sustain. Environ. Res. 2018, 28, 333–339. [Google Scholar] [CrossRef]
- Kadivar, S.; Pourhossein, F.; Mousavi, S.M. Recovery of Valuable Metals from Spent Mobile Phone Printed Circuit Boards Using Biochar in Indirect Bioleaching. J. Environ. Manag. 2021, 280, 111642. [Google Scholar] [CrossRef] [PubMed]
- Thacker, S.C.; Nayak, N.S.; Tipre, D.R.; Dave, S.R. Multi-Metal Mining from Waste Cell Phone Printed Circuit Boards Using Lixiviant Produced by a Consortium of Acidophilic Iron Oxidizers. Environ. Eng. Sci. 2022, 39, 287–295. [Google Scholar] [CrossRef]
- Nasiri, T.; Mokhtari, M.; Teimouri, F.; Abouee, E. Remediation of Metals and Plastic from E-Waste by Iron Mine Indigenous Acidophilic Bacteria. Waste Manag. Res. 2023, 41, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Chakankar, M.; Hong, H. Microbial Consortium: A Promising Strategy for Bioleaching of Metals from Industrial Wastes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 109–134. [Google Scholar] [CrossRef]
- Arshadi, M.; Nili, S.; Yaghmaei, S. Ni and Cu Recovery by Bioleaching from the Printed Circuit Boards of Mobile Phones in Non-Conventional Medium. J. Environ. Manag. 2019, 250, 109502. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Martínez, M.E.; Argumedo-Delira, R.; Sánchez-Viveros, G.; Alarcón, A.; Mendoza-López, M.R. Microbial Bioleaching of Ag, Au and Cu from Printed Circuit Boards of Mobile Phones. Curr. Microbiol. 2019, 76, 536–544. [Google Scholar] [CrossRef]
- Thacker, S.C.; Nayak, N.S.; Tipre, D.R.; Dave, S.R. Impact of Pulverization, Pretreatment and PH Regulation on Microbial Extraction of Metals from Waste Mobile Phone Printed Circuit Boards. Appl. Biochem. Microbiol. 2021, 57, 675–682. [Google Scholar] [CrossRef]
- Pakostova, E.; Herath, A. A Bioleaching Process for Sustainable Recycling of Complex Structures with Multi-Metal Layers. Sustainability 2023, 15, 14068. [Google Scholar] [CrossRef]
- Pathak, A.; Srichandan, H.; Kim, D.J. Column Bioleaching of Metals from Refinery Spent Catalyst by Acidithiobacillus thiooxidans: Effect of Operational Modifications on Metal Extraction, Metal Precipitation, and Bacterial Attachment. J. Environ. Manag. 2019, 242, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, K.; Kutschke, S.; Matys, S.; Raff, J.; Hlawacek, G.; Lederer, F.L. Bio-Recycling of Metals: Recycling of Technical Products Using Biological Applications. Biotechnol. Adv. 2018, 36, 1048–1062. [Google Scholar] [CrossRef] [PubMed]
- Ranawat, P.; Rawat, S. Metal-Tolerant Thermophiles: Metals as Electron Donors and Acceptors, Toxicity, Tolerance and Industrial Applications. Environ. Sci. Pollut. Res. 2017, 25, 4105–4133. [Google Scholar] [CrossRef] [PubMed]
- Sar, P.; Kazy, S.K.; Paul, D.; Sarkar, A. Metal Bioremediation by Thermophilic Microorganisms. In Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles; Springer: Berlin/Heidelberg, Germany, 2013; pp. 171–201. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching Approach for Extraction of Metal Values from Secondary Solid Wastes: A Critical Review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Kim, D.J.; Srichandan, H.; Gahan, C.S.; Lee, S.W. Thermophilic Bioleaching of Spent Petroleum Refinery Catalyst Using Sulfolobus metallicus. Can. Metall. Q. 2012, 51, 403–412. [Google Scholar] [CrossRef]
- Roshani, M.; Shojaosadati, S.A.; Safdari, S.J.; Vasheghani-Farahani, E.; Mirjalili, K.; Manafi, Z. Bioleaching of Molybdenum by Two New Thermophilic Strains Isolated and Characterized. Iran. J. Chem. Chem. Eng. 2017, 36, 183–194. [Google Scholar] [CrossRef]
- Mikael Sehlin, H.; Börje Lindström, E. Oxidation and Reduction of Arsenic by Sulfolobus acidocaldarius Strain BC. FEMS Microbiol. Lett. 1992, 93, 87–92. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Al-Awadhi, H.; Sorkhoh, N.A.; Eliyas, M.; Radwan, S.S. Mercury Resistance and Volatilization by Oil Utilizing Haloarchaea under Hypersaline Conditions. Extremophiles 2011, 15, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ruiz, A.; Field, J.A.; Wilkening, J.V.; Sierra-Alvarez, R. Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. Environ. Sci. Technol. 2016, 50, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Pat-Espadas, A.M.; Field, J.A.; Otero-Gonzalez, L.; Razo-Flores, E.; Cervantes, F.J.; Sierra-Alvarez, R. Recovery of Palladium(II) by Methanogenic Granular Sludge. Chemosphere 2016, 144, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Pihl, T.D.; Reeve, J.N.; Daniels, L. Purification of the Copper Response Extracellular Proteins Secreted by the Copper-Resistant Methanogen Methanobacterium bryantii BKYH and Cloning, Sequencing, and Transcription of the Gene Encoding These Proteins. J Bacteriol. 1995, 177, 7178–7185. [Google Scholar] [CrossRef]
- Singh, R.; Dong, H.; Liu, D.; Marts, A.R.; Tierney, D.L.; Almquist, C.B. [Cobalt(III)-EDTA]- Reduction by Thermophilic Methanogen Methanothermobacter thermautotrophicus. Chem. Geol. 2015, 411, 49–56. [Google Scholar] [CrossRef]
- Singh, R.; Dong, H.; Liu, D.; Marts, A.R.; Tierney, D.L.; Almquist, C.B. Reduction of Hexavalent Chromium by the Thermophilic Methanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 2015, 148, 442–456. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. European Union Council Direttiva—2008/98—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32008L0098 (accessed on 28 February 2024).
- Kucuker, M.A.; Kuchta, K. Biomining—Biotechnological Systems for the Extraction and Recovery of Metals from Secondary Sources. Glob. Nest J. 2018, 20, 737–742. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1854. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.S.; Park, J.M. The Past, Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Sheel, A.; Pant, D. Recovery of Gold from Electronic Waste Using Chemical Assisted Microbial Biosorption (Hybrid) Technique. Bioresour. Technol. 2018, 247, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Faraji, F.; Wang, J.; Mahandra, H.; Ghahreman, A. A Green and Sustainable Process for the Recovery of Gold from Low-Grade Sources Using Biogenic Cyanide Generated by Bacillus megaterium: A Comprehensive Study. ACS Sustain. Chem. Eng. 2021, 9, 236–245. [Google Scholar] [CrossRef]
- Sinha, R.; Chauhan, G.; Singh, A.; Kumar, A.; Acharya, S. A Novel Eco-Friendly Hybrid Approach for Recovery and Reuse of Copper from Electronic Waste. J. Environ. Chem. Eng. 2018, 6, 1053–1061. [Google Scholar] [CrossRef]
- Gebregiorgis Ambaye, T.; Vaccari, M.; Duarte Castro, F.; Prasad, S.; Rtimi, S. Emerging Technologies for the Recovery of Rare Earth Elements (REEs) from the End-of-Life Electronic Wastes: A Review on Progress, Challenges, and Perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef]
- Gavrilescu, M. Microbial Recovery of Critical Metals from Secondary Sources. Bioresour. Technol. 2022, 344, 126208. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Jiang, L.; Zhou, P.; Quan, X.; Logan, B.E. Adaptively Evolving Bacterial Communities for Complete and Selective Reduction of Cr(VI), Cu(II), and Cd(II) in Biocathode Bioelectrochemical Systems. Environ. Sci. Technol. 2015, 49, 9914–9924. [Google Scholar] [CrossRef]
- Yu, Z.; Han, H.; Feng, P.; Zhao, S.; Zhou, T.; Kakade, A.; Kulshrestha, S.; Majeed, S.; Li, X. Recent Advances in the Recovery of Metals from Waste through Biological Processes. Bioresour. Technol. 2020, 297, 122416. [Google Scholar] [CrossRef]
- Porcar, M.; Latorre, A.; Moya, A. What Symbionts Teach Us about Modularity. Front. Bioeng. Biotechnol. 2013, 1, 14. [Google Scholar] [CrossRef]
- Lorenz, D.M.; Jeng, A.; Deem, M.W. The Emergence of Modularity in Biological Systems. Phys. Life Rev. 2011, 8, 129–160. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Soto, C.; Wagner, A. Specialization Can Drive the Evolution of Modularity. PLoS. Comput. Biol. 2010, 6, e1000719. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Löwer, M. Ecodesign—A Review of Reviews. Sustainability 2020, 13, 315. [Google Scholar] [CrossRef]
- Arisya, K.F.; Suryantini, R. Modularity in Design for Disassembly (DfD): Exploring the Strategy for a Better Sustainable Architecture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 738. [Google Scholar]
- Grunberg, T.W.; Del Vecchio, D. Modular Analysis and Design of Biological Circuits. Curr. Opin. Biotechnol. 2020, 63, 41–47. [Google Scholar] [CrossRef] [PubMed]
- European Commission, D.-G. for I.M.I.E. and Sme.R. Body: G. Regulation—2023/1670—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=OJ:JOL_2023_214_R_0003 (accessed on 26 February 2024).
- European Commission, D.-G. for J. and C. EUR-Lex—52023PC0155—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52023PC0155 (accessed on 25 February 2024).
- European Parliament, C. of the E.U. Regulation—2023/1542—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2023/1542/oj (accessed on 25 February 2024).
- Cornelissen, R.; Bøggild, A.; Thiruvallur Eachambadi, R.; Koning, R.I.; Kremer, A.; Hidalgo-Martinez, S.; Zetsche, E.M.; Damgaard, L.R.; Bonné, R.; Drijkoningen, J.; et al. The Cell Envelope Structure of Cable Bacteria. Front. Microbiol. 2018, 9, 413609. [Google Scholar] [CrossRef]
- Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; et al. Efficient Long-Range Conduction in Cable Bacteria through Nickel Protein Wires. Nat. Commun. 2021, 12, 3996. [Google Scholar] [CrossRef]
Bioleaching Condition | Culture Type | Metal Leaching (% or mg) | Reference |
---|---|---|---|
Optimal conditions (ferrous sulfate: 13.0 g/L; touch screen content: 3.0 g/L; elemental sulfur: 5.6 g/L; and initial pH of 1.1) | Adapted Acidithiobacillus ferrooxidans pure culture | 100% In (200 mg/L indium); 5% Sr (3000 mg/L) | [88] |
Indirect two-step bioleaching process: Step 1—Fe2+ bio-oxidation to Fe3+ by Acidithiobacillus ferrooxidans (48 h); Step 2—Fe3+ used for Cu solubilization; 7.5 g/L PCB, 48 h total, | Acidithiobacillus ferrooxidans pure culture | Cu: 95–100% | [91] |
15 g/L pulp density, 10% (w/w) inoculum size, 30 °C, 130 rpm, mixed e-waste | Adapted Acidithiobacillus ferrooxidans pure culture | Cu: 100%, Fe: 100%, Ni: 54% | [92] |
0.5 mm particle size e-waste, variable pulp densities (0.5%, 1%, 1.5%, 2%) | Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans pure culture | Cu: 79% (A. ferrooxidans, 1% pulp density), Ni: 80%, Al: 70% (A. ferrooxidans, 0.5% pulp density), Co: 61.7%, Zn: 60.9%, Pb: 49.8% (A. thiooxidans, 0.5% pulp density), Au: 55% (A. ferrooxidans, 1% pulp density), Au: 67% (A. thiooxidans, 1% pulp density) | [93] |
9K medium, 35 days for In, 14–21 days for Sn | Mixed adapted bacteria (Acidothiobacillus ferrooxidans and Acidothiobacillus thiooxidans) | In: 55.6%; Sn: 90.2% | [94] |
batch bioleaching at varying pulp densities of 7%, 10%, and 15% (w/v). Cu content in the feed material was 26.3% (w/w) | Mixed microbial consortia of iron- and sulfur-oxidizing microorganisms | Cu: 98–99% | [95] |
pH 4.5 (initial), decreased to 2.8 (in consortium), 35 days, glucose as carbon source, no agitation | (a) Aspergillus niger MXPE6 pure culture, (b) Fungal Consortium | (a) Au 17%, (b) Au 56% | [96] |
Multi-metal extraction from PCBs and tantalum capacitor scrap | (a) Mixed consortium of acidophiles and heterotrophic fungal strains (b) Pure A. niger filtrate containing sulfuric, citric, and oxalic acids | (a) PCB samples: Ni and Cu (99% and 96%, respectively); Fe, Zn, Al, and Mn (89, 77, 70, and 43%, respectively). Tantalum capacitor samples: 92% Cu, 88% Ni, 78% Fe, 77% Al, 70% Zn, and 57% Mn. (b) PCB samples: Cu, Fe, Al, Mn, Ni, Pb, and Zn at an efficiency of 52, 29, 75, 5, 61, 21, and 35%. Tantalum capacitor samples: 61, 25, 69, 23, 68, 15, and 45% from tantalum capacitor samples, respectively. | [97] |
pH of 10.0, pulp density of 5 g/L, and leaching time of 34 h | Mixed culture of cyanide-producing strains of Pseudomonas putida and Bacillus megaterium | Au: 83.59% | [98] |
pH 1.8; initial ferrous concentration of 9 g L−1; 4–7 days; pulp densities of 10, 50, and 100 g L−1; acidophilic iron oxidizers | Iron-oxidizing microbial consortium | Cu: 275 mg (10 g L−1), 1350 mg (50 g L−1), 2640 mg (100 g L−1); Zn: 5 mg (10 g L−1), 18 mg (50 g L−1), 25 mg (100 g L−1); Ni: 11 mg (10 g L−1), 53 mg (50 g L−1), 100 mg (100 g L−1) | [99] |
9 g/L Fe2+, 10% pulp density, initial pH 1.8, 10% (v/v) initial inoculum, ORP > 750 mV (shake flask) and >650 mV (bench-scale bioreactor), 8 days | Mixed meso-acidophilic bacteria | Cu: 98.1%, Al: 55.9%, Ni: 79.5%, Zn: 66.9% (shake flask); Cu: 97.3%, Al: 55.8%, Ni: 79.3%, Zn: 66.8% (bench-scale bioreactor) | [100] |
Indirect bioleaching with ferric iron lixiviant at constant pH (2) | Leptospirillum-dominated consortium | Cu at 96.86% from NaOH pretreated unpulverized PCBs; Zn at 90.69% from NaOH pretreated pulverized PCBs; Ni at 93.65% with untreated unpulverized PCBs | [101] |
pH: acidic and alkaline, 10 g/L e-waste loading, indigenous acidophilic heterotrophic bacterial consortium sourced from iron ore soils | Indigenous acidophilic heterotrophic bacterial consortium | Cu: 4%, Cr: ≤0.002%, Overall: 4.7% | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magrini, C.; Verga, F.; Bassani, I.; Pirri, C.F.; Abdel Azim, A. A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering 2025, 12, 101. https://doi.org/10.3390/bioengineering12020101
Magrini C, Verga F, Bassani I, Pirri CF, Abdel Azim A. A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering. 2025; 12(2):101. https://doi.org/10.3390/bioengineering12020101
Chicago/Turabian StyleMagrini, Chiara, Francesca Verga, Ilaria Bassani, Candido Fabrizio Pirri, and Annalisa Abdel Azim. 2025. "A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals" Bioengineering 12, no. 2: 101. https://doi.org/10.3390/bioengineering12020101
APA StyleMagrini, C., Verga, F., Bassani, I., Pirri, C. F., & Abdel Azim, A. (2025). A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering, 12(2), 101. https://doi.org/10.3390/bioengineering12020101