Utility of Clustering in Mortality Risk Stratification in Pulmonary Hypertension
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Cardio-Pulmonary Tests
- Spirometry
- DLCO
- Six Minute Walking Test
- Right Heart Catheterization
2.3. Data Analysis
- Unsupervised and supervised analysis
3. Results
4. Discussion
Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.; Bartolome, S.; Denton, C.P.; Gatzoulis, M.A.; Gu, S.; Khanna, D.; Badesch, D.; Montani, D. Definition, classification and diagnosis of pulmonary hypertension. Eur. Respir. J. 2024, 64, 2401324. [Google Scholar] [CrossRef] [PubMed]
- Rose-Jones, L.J.; Mclaughlin, V.V. Pulmonary hypertension: Types and treatments. Curr. Cardiol. Rev. 2015, 11, 73–79. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Humbert, M.; Souza, R.; Idrees, M.; Kawut, S.M.; Sliwa-Hahnle, K.; Jing, Z.C.; Gibbs, J.S. A global view of pulmonary hypertension. Lancet Respir. Med. 2016, 4, 306–322. [Google Scholar] [CrossRef]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef]
- Boon, G.J.A.M.; Ende-Verhaar, Y.M.; Bavalia, R.; El Bouazzaoui, L.H.; Delcroix, M.; Dzikowska-Diduch, O.; Huisman, M.V.; Kurnicka, K.; Mairuhu, A.T.A.; Middeldorp, S.; et al. Non-invasive early exclusion of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: The InShape II study. Thorax 2021, 76, 1002–1009. [Google Scholar] [CrossRef]
- Chin, K.M.; Gaine, S.P.; Gerges, C.; Jing, Z.C.; Mathai, S.C.; Tamura, Y.; McLaughlin, V.V.; Sitbon, O. Treatment algorithm for pulmonary arterial hypertension. Eur. Respir. J. 2024, 64, 2401325. [Google Scholar] [CrossRef]
- Gaine, S.; Sitbon, O.; Channick, R.N.; Chin, K.M.; Sauter, R.; Galièb, N.; Hoeper, M.M.; McLaughlin, V.V.; Preiss, R.; Rubin, L.J.; et al. Relationship between time from diagnosis and morbidity/mortality in pulmonary arterial hypertension: Results from the phase III GRIPHON study. Chest 2021, 160, 277–286. [Google Scholar] [CrossRef]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J.; et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grünig, E. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Engel, P.; Bajwa, A.; Ravichandran, A.; Feldman, J. Long-term inhaled treprostinil for pulmonary hypertension due to interstitial lung disease: INCREASE open-label extension study. Eur. Respir. J. 2023, 61, 2202414. [Google Scholar] [CrossRef] [PubMed]
- Teerapuncharoen, K.; Bag, R. Chronic Thromboembolic Pulmonary Hypertension. Lung 2022, 200, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Siontis, K.C.; Noseworthy, P.A.; Attia, Z.I.; Friedman, P.A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 2021, 18, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Tison, G.H.; Zhang, J.; Delling, F.N.; Deo, R.C. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005289. [Google Scholar] [CrossRef]
- Bergemann, R.; Allsopp, J.; Jenner, H.; Daniels, F.A.; Drage, E.; Samyshkin, Y.; Schmitt, C.; Wood, S.; Kiely, D.G.; Lawrie, A.; et al. High levels of healthcare utilization prior to diagnosis in idiopathic pulmonary arterial hypertension support the feasibility of an early diagnosis algorithm: The SPHInX project. Pulm. Circ. 2018, 8, 2045894018798613. [Google Scholar] [CrossRef]
- Kiely, D.G.; Doyle, O.; Drage, E.; Jenner, H.; Salvatelli, V.; Daniels, F.A.; Rigg, J.; Schmitt, C.; Samyshkin, Y.; Lawrie, A.; et al. Utilising artificial intelligence to determine patients at risk of a rare disease: Idiopathic pulmonary arterial hypertension. Pulm. Circ. 2019, 9, 2045894019890549. [Google Scholar] [CrossRef]
- Kylhammar, D.; Kjellström, B.; Hjalmarsson, C.; Jansson, K.; Nisell, M.; Söderberg, S.; Wikström, G.; Rådegran, G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur. Heart J. 2018, 39, 4175–4181. [Google Scholar] [CrossRef]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting survival in pulmonary arterial hypertension: Insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef]
- Sweatt, A.J.; Hedlin, H.K.; Balasubramanian, V.; Hsi, A.; Blum, L.K.; Robinson, W.H.; Haddad, F.; Hickey, P.M.; Condliffe, R.; Lawrie, A.; et al. Discovery of Distinct Immune Phenotypes Using Machine Learning in Pulmonary Arterial Hypertension. Circ. Res. 2019, 124, 904–919. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; MacIntyre, N.R.; Thompson, B.R.; Wanger, J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117, Erratum in Am. J. Respir. Crit. Care Med. 2016, 193, 1185. [Google Scholar]
- IBM. SPSS Software. 2024. Available online: https://www.ibm.com/spss (accessed on 25 January 2025).
- Orange Data Mining. Available online: https://orangedatamining.com/ (accessed on 25 January 2025).
- Mandras, S.A.; Mehta, H.S.; Vaidya, A. Pulmonary Hypertension: A Brief Guide for Clinicians. Mayo Clin. Proc. 2020, 95, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, L.; Blaschke, T. Adherence to medication. N. Engl. J. Med. 2005, 353, 487–497. [Google Scholar] [CrossRef]
- Humbert, M.; Gerry Coghlan, J.; Khanna, D. Early detection and management of pulmonary arterial hypertension. Eur. Respir. Rev. 2012, 21, 306–312. [Google Scholar] [CrossRef]
- Janssens, J.P.; Pache, J.C.; Nicod, L.P. Physiological changes in respiratory function associated with ageing. Eur. Respir. J. 1999, 13, 197–205. [Google Scholar] [CrossRef]
- Knudson, R.J.; Slatin, R.C.; Lebowitz, M.D.; Burrows, B. The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am. Rev. Respir. Dis. 1976, 113, 587–600. [Google Scholar]
- Berra, G.; Noble, S.; Soccal, P.M.; Beghetti, M.; Lador, F. Pulmonary hypertension in the elderly: A different disease? Breathe 2016, 12, 43–49. [Google Scholar] [CrossRef]
- Pescatore, J.; Bittner, M.; D’Alonzo, G.; Weaver, S.; Gayen, S. Predictors of Mortality in Pulmonary Hypertension-Associated Chronic Lung Disease. J. Clin. Med. 2024, 13, 3472. [Google Scholar] [CrossRef]
- Guazzi, M.; Galiè, N. Pulmonary hypertension in left heart disease. Eur. Respir. Rev. 2012, 21, 338–346. [Google Scholar] [CrossRef]
- Benza, R.L.; Gomberg-Maitland, M.; Miller, D.P.; Frost, A.; Frantz, R.P.; Foreman, A.J.; Badesch, D.B.; McGoon, M.D. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest 2012, 141, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Pausch, C.; Grünig, E.; Klose, H.; Staehler, G.; Huscher, D.; Pittrow, D.; Olsson, K.M.; Vizza, C.D.; Gall, H.; et al. Idiopathic pulmonary arterial hypertension phenotypes determined by cluster analysis from the COMPERA registry. J. Heart Lung Transpl. Transplant. 2020, 39, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Benza, R.L.; Kanwar, M.K.; Raina, A.; Scott, J.V.; Zhao, C.L.; Selej, M.; Elliott, C.G.; Farber, H.W. Development and Validation of an Abridged Version of the REVEAL 2.0 Risk Score Calculator, REVEAL Lite 2, for Use in Patients with Pulmonary Arterial Hypertension. Chest 2021, 159, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Kramer, T.; Pan, Z.; Eichstaedt, C.A.; Spiesshoefer, J.; Benjamin, N.; Olsson, K.M.; Meyer, K.; Vizza, C.D.; Vonk-Noordegraaf, A.; et al. Mortality in pulmonary arterial hypertension: Prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur. Respir. J. 2017, 50, 1700740. [Google Scholar] [CrossRef]
- Boucly, A.; Weatherald, J.; Savale, L.; Jaïs, X.; Cottin, V.; Prevot, G.; Picard, F.; de Groote, P.; Jevnikar, M.; Bergot, E.; et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur. Respir. J. 2017, 50, 1700889. [Google Scholar] [CrossRef]
- Benza, R.L.; Gomberg-Maitland, M.; Elliott, C.G.; Farber, H.W.; Foreman, A.J.; Frost, A.E.; McGoon, M.D.; Pasta, D.J.; Selej, M.; Burger, C.D.; et al. Predicting Survival in Patients with Pulmonary Arterial Hypertension: The REVEAL Risk Score Calculator 2.0 and Comparison With ESC/ERS-Based Risk Assessment Strategies. Chest 2019, 156, 323–337. [Google Scholar] [CrossRef]
- Dwivedi, K.; Sharkey, M.; Delaney, L.; Alabed, S.; Rajaram, S.; Hill, C.; Johns, C.; Rothman, A.; Mamalakis, M.; Thompson, A.A.R.; et al. Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT. Radiology 2024, 310, e231718. [Google Scholar] [CrossRef]
- Imai, S.; Sakao, S.; Nagata, J.; Naito, A.; Sekine, A.; Sugiura, T.; Shigeta, A.; Nishiyama, A.; Yokota, H.; Shimizu, N.; et al. Artificial intelligence-based model for predicting pulmonary arterial hypertension on chest x-ray images. BMC Pulm. Med. 2024, 24, 101. [Google Scholar] [CrossRef]
- Hirata, Y.; Tsuji, T.; Kotoku, J.; Sata, M.; Kusunose, K. Echocardiographic artificial intelligence for pulmonary hypertension classification. Heart 2024, 110, 586–593. [Google Scholar] [CrossRef]
- Liu, C.M.; Shih, E.S.C.; Chen, J.Y.; Huang, C.H.; Wu, I.C.; Chen, P.F.; Higa, S.; Yagi, N.; Hu, Y.F.; Hwang, M.J.; et al. Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients with Pulmonary Hypertension. JACC Asia 2022, 2, 258–270. [Google Scholar] [CrossRef]
- Giannuzzi, V.; Stoyanova-Beninska, V.; Hivert, V. Editorial: The use of real world data for regulatory purposes in the rare diseases setting. Front. Pharmacol. 2022, 13, 1089033. [Google Scholar] [CrossRef]
Clinical Parameters | N = 122 |
---|---|
Age (years) | 67.13 ± 11.64 |
Male (%) | 52% |
PH Group 1, 2, 4, 5 (%) | 69% |
PH Group 3 (%) | 31% |
FVC (%) | 77.56 ± 19.10 |
FEV1 (%) | 73.12 ± 18.23 |
FEV1/FVC (%) | 76.40 ± 13.20 |
DLCO (%) | 48.20 ± 18.92 |
DLCO/VA (%) | 74.18 ± 21.95 |
FVC/DLCO (%) | 1.84 ± 0.67 |
sPAP (mmHg) | 68.72 ± 21.95 |
mPAP (mmHg) | 39.46 ± 12.46 |
PCWP (mmHg) | 14.60 ± 6.40 |
CI (Lmin−1mt−2) | 2.69 ± 1.09 |
RAP (mmHg) | 11.55 ± 6.26 |
PVR (Wu) | 5.83 ± 3.86 |
TPG (mmHg) | 24.83 ± 13.46 |
6MWT (mt) | 276.21 ± 119.31 |
WHO functional class (n) | 2.96 ± 0.73 |
Number of drugs (n) | 1.25 ± 0.98 |
Exitus (%) | 47% |
Months of survival (n) | 43.03 ± 22.25 |
Cluster 1 N = 49 | Cluster 2 N = 36 | Cluster 3 N = 37 | p | |
---|---|---|---|---|
Age (years) | 68.57 ± 10.54 b | 71.36 ± 8.32 c | 61.11 ± 13.50 b, c | <0.001 |
Male (%) | 43% | 50% | 65% | 0.128 |
PH Group 1, 2, 4, 5 (%) | 69% | 56% | 81% | 0.063 |
PH Group 3 (%) | 31% | 44% | 19% | 0.063 |
FVC (%) | 83.34 ± 19.40 a | 68.01 ± 12.66 a, c | 79.18 ± 20.71 c | 0.001 |
FEV1 (%) | 78.78 ± 21.54 a | 68.12 ± 10.20 a | 70.51 ± 17.91 | 0.015 |
FEV1/FVC (%) | 76.15 ± 13.29 | 82.33 ± 9.98 c | 70.96 ± 13.70 c | 0.001 |
DLCO (%) | 58.82 ± 20.91 a, b | 38.15 ± 11.50 a | 43.91 ± 14.78 b | <0.001 |
DLCO/VA (%) | 81.49 ± 20.33 a | 66.46 ± 18.81a | 72.03 ± 24.23 | 0.005 |
FVC/DLCO (%) | 1.66 ± 0.55 | 1.93 ± 0.57 | 2.00 ± 0.85 | 0.044 |
sPAP (mmHg) | 55.24 ± 16.72 a, b | 72.64 ± 19.79 a | 82.76 ± 20.02 b | <0.001 |
mPAP (mmHg) | 30.22 ± 7.64 a, b | 42.50 ± 9.67 b, c | 48.72 ± 11.80 c | <0.001 |
PCWP (mmHg) | 15.09 ± 6.80 | 16.35 ± 6.84 c | 12.24 ± 4.63 c | 0.017 |
CI (Lmin−1mt−2) | 3.23 ± 1.45 a, b | 2.33 ± 0.43 a | 2.32 ± 0.60 b | <0.001 |
RAP (mmHg) | 9.56 ± 4.95 a | 15.29 ± 8.06 a, c | 10.55 ± 3.95 c | <0.001 |
PVR (Wu) | 3.17 ± 1.54 a, b | 6.59 ± 2.96 a, c | 8.61 ± 4.51 b, c | <0.001 |
TPG (mmHg) | 15.32 ± 7.64 a, b | 25.95 ± 12.21 a, c | 36.32 ± 11.24 b, c | <0.001 |
6MWT (mt) | 318.38 ± 130.34 a | 219.09 ± 79.82 a | 275.95 ± 115.40 | 0.001 |
WHO functional class (n) | 2.61 ± 0.84 a, b | 3.18 ± 0.49 a | 3.22 ± 0.58 b | <0.001 |
Number of drugs (n) | 0.71 ± 0.79 b | 1.08 ± 0.81 c | 2.14 ± 0.71 b, c | <0.001 |
Exitus (%) | 33% a | 75% a, c | 38% c | <0.001 |
Months of survival (n) | 49.58 ± 18.46 a | 24.10 ± 22.76 a, c | 52.78 ± 13.81 c | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tondo, P.; Tricarico, L.; Galgano, G.; Varlese, M.P.C.; Aruanno, D.; Gallo, C.; Scioscia, G.; Brunetti, N.D.; Correale, M.; Lacedonia, D. Utility of Clustering in Mortality Risk Stratification in Pulmonary Hypertension. Bioengineering 2025, 12, 408. https://doi.org/10.3390/bioengineering12040408
Tondo P, Tricarico L, Galgano G, Varlese MPC, Aruanno D, Gallo C, Scioscia G, Brunetti ND, Correale M, Lacedonia D. Utility of Clustering in Mortality Risk Stratification in Pulmonary Hypertension. Bioengineering. 2025; 12(4):408. https://doi.org/10.3390/bioengineering12040408
Chicago/Turabian StyleTondo, Pasquale, Lucia Tricarico, Giuseppe Galgano, Maria Pia C. Varlese, Daphne Aruanno, Crescenzio Gallo, Giulia Scioscia, Natale D. Brunetti, Michele Correale, and Donato Lacedonia. 2025. "Utility of Clustering in Mortality Risk Stratification in Pulmonary Hypertension" Bioengineering 12, no. 4: 408. https://doi.org/10.3390/bioengineering12040408
APA StyleTondo, P., Tricarico, L., Galgano, G., Varlese, M. P. C., Aruanno, D., Gallo, C., Scioscia, G., Brunetti, N. D., Correale, M., & Lacedonia, D. (2025). Utility of Clustering in Mortality Risk Stratification in Pulmonary Hypertension. Bioengineering, 12(4), 408. https://doi.org/10.3390/bioengineering12040408