Unlocking Deeper Insights into Medical Images with Machine Learning
Author Contributions
Funding
Conflicts of Interest
References
- Yang, D.; Wang, W.; Yuan, Z.; Liang, Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering 2013, 10, 856. [Google Scholar] [CrossRef]
- Fu, X.; Song, C.; Zhang, R.; Shi, H.; Jiao, Z. Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment. Bioengineering 2013, 10, 958. [Google Scholar] [CrossRef]
- Coluzzi, D.; Bordin, V.; Rivolta, M.W.; Fortel, L.; Zhan, L.; Leow, A.; Baselli, G. Biomarker Investigation Using Multiple Brain Measures from MRI Through Explainable Artificial Intelligence in Alzheimer’s Disease Classification. Bioengineering 2025, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Torres, S.I.; Ruiz, A.; Holland, L.; Ortiz, R.; Snider, E.J. Evaluation of Deep Learning Model Architectures for Point-of-Care Ultrasound Diagnostics. Bioengineering 2024, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, K.; Gagnon, J.; Wang, Y.; Raney, T.; Chen, J.; Chen, Y.; Okunuki, Y.; Chen, W.; Zhang, B. FundusNet: A Deep-Learning Approach for Fast Diagnosis of Neurodegenerative and Eye Diseases Using Fundus Images. Bioengineering 2025, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Li, Z. Curriculum Consistency Learning and Multi-Scale Contrastive Constraint in Semi-Supervised Medical Image Segmentation. Bioengineering 2023, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhu, H.; Chen, W.; Chen, C.; Xu, J. Outlier Handling Strategy of Ensembled-Based Sequential Convolutional Neural Networks for Sleep Stage Classification. Bioengineering 2024, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Lee, M. Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis. Bioengineering 2023, 10, 897. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Monga, A.; Moura, H.L.D.; Zhang, X.; Zibetti, M.V.W.; Regatte, R.R. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Bioengineering 2023, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Wang, L.; Suo, M.; Liu, X.; Huang, H.; Zhang, J.; Zhang, W.; Li, Z. The Digital Twin: A Potential Solution for the Personalized Diagnosis and Treatment of Musculoskeletal System Diseases. Bioengineering 2023, 10, 627. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lu, C.; Xu, J. Unlocking Deeper Insights into Medical Images with Machine Learning. Bioengineering 2025, 12, 451. https://doi.org/10.3390/bioengineering12050451
Wang X, Lu C, Xu J. Unlocking Deeper Insights into Medical Images with Machine Learning. Bioengineering. 2025; 12(5):451. https://doi.org/10.3390/bioengineering12050451
Chicago/Turabian StyleWang, Xiangxue, Cheng Lu, and Jun Xu. 2025. "Unlocking Deeper Insights into Medical Images with Machine Learning" Bioengineering 12, no. 5: 451. https://doi.org/10.3390/bioengineering12050451
APA StyleWang, X., Lu, C., & Xu, J. (2025). Unlocking Deeper Insights into Medical Images with Machine Learning. Bioengineering, 12(5), 451. https://doi.org/10.3390/bioengineering12050451