PE-MT: A Perturbation-Enhanced Mean Teacher for Semi-Supervised Image Segmentation
Abstract
:1. Introduction
2. Method
2.1. Scheme Overview
2.2. Semi-Supervised Segmentation
2.3. The pEMA
2.4. The RUM
3. Experiments and Results
3.1. Dataset and Evaluation Metrics
3.2. Implementation Details
3.3. Segmentation of the LASC Dataset
3.4. Segmentation of the ACDC Dataset
3.5. Ablation Study
3.5.1. Effect of the pEMA and RUM
3.5.2. The Parameters and
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhou, Y.; Shen, W.; Park, S.; Fishman, E.; Yuille, A. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 2019, 55, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, G.; Song, T.; Zhang, J.; Zhang, S. MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning. Med. Image Anal. 2021, 72, 102102. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zuluaga, M.; Li, W.; Rosalind, P.; Patel, P.; Michael, A.; Tom, D.; Divid, A.; Jan, D.; Sebastien, O. DeepIGeoS: A deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Jiao, R.; Zhang, Y.; Ding, L.; Xue, B.; Zhang, J.; Cai, R.; Jin, C. Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation. Comput. Biol. Med. 2024, 169, 107840. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Dong, B.; Wang, W.; Fan, D.; Li, J.; Fu, H.; Shao, L. Polyp-pvt: Polyp segmentation with pyramid vision transformers. arXiv 2021, arXiv:2108.06932. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning, Online, 13–18 July 2020; pp. 1597–1607. [Google Scholar] [CrossRef]
- Grill, J.; Strub, F.; Altche, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Pires, B.; Guo, Z.; Azar, M. Bootstrap your own latent: A new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284. [Google Scholar] [CrossRef]
- Laine, S.; Aila, T. Temporal Ensembling for Semi-Supervised Learning. arXiv 2016, arXiv:1610.02242. [Google Scholar] [CrossRef]
- Yang, L.; Zhuo, W.; Qi, L.; Shi, Y.; Gao, Y. St++: Make self-training work better for semi-supervised semantic segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4268–4277. [Google Scholar] [CrossRef]
- Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 2017, 30, 1195–1204. [Google Scholar] [CrossRef]
- Saleh, F.; Aliakbarian, M.; Salzmann, M.; Petersson, L.; Gould, S.; Alvarez, J. Built-in foreground/background prior for weakly-supervised semantic segmentation. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 413–432. [Google Scholar] [CrossRef]
- Yang, R.; Song, L.; Ge, Y.; Li, X. BoxSnake: Polygonal Instance Segmentation with Box Supervision. In Proceedings of the International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; pp. 766–776. [Google Scholar] [CrossRef]
- Mei, C.; Yang, X.; Zhou, M.; Zhang, S.; Chen, H.; Yang, X.; Wang, L. Semi-supervised image segmentation using a residual-driven mean teacher and an exponential Dice loss. Artif. Intell. Med. 2024, 148, 102757. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, S.; Li, X.; Fu, C.; Heng, P. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 605–613. [Google Scholar] [CrossRef]
- Adiga, S.; Dolz, J.; Lombaert, H. Leveraging labeling representations in uncertainty-based semi-supervised segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Singapore, 18–22 September 2022; pp. 265–275. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; He, X. Shape-aware semi-supervised 3D semantic segmentation for medical images. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 552–561. [Google Scholar] [CrossRef]
- Luo, X.; Chen, J.; Song, T.; Chen, Y.; Zhang, S. Semi-supervised medical image segmentation through dual-task consistency. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 8801–8809. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Ling, T.; Lu, J.; Zheng, Y.; Yu, Q.; Gao, Y. Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 2021, 41, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, B.; Yu, S.; Yang, X.; Yu, Q.; Zhou, J.; Jiang, G.; Zheng, Q.; Pu, J.; Wang, L. Adaptive boundary-enhanced Dice loss for image segmentation. Biomed. Signal Process. Control 2025, 106, 107741. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 2017, 30, 5580–5590. [Google Scholar] [CrossRef]
- Xiong, Z.; Xia, Q.; Hu, Z.; Huang, N.; Zhao, J. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 2021, 67, 101832. [Google Scholar] [CrossRef] [PubMed]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Oktay, O.; Sinclair, M.; Suzuki, H.; Rajchl, M.; Tarroni, G.; Glocker, B.; King, A.; Matthews, P.; Rueckert, D. Semi-supervised learning for network-based cardiac MR image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, QC, Canada, 10–14 September 2017; pp. 253–260. [Google Scholar] [CrossRef]
- Taha, A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Cherstvy, A.; Seckler, H.; Hering, R.; Blaum, N.; Jeltsch, F.; Metzler, R. Directedeness, correlations, and daily cycles in springbok motion: From data via stochastic models to movement prediction. Phys. Rev. Res. 2023, 5, 043129. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, Z.; Zhang, J.; Mei, C.; Li, G.; Wang, L. Automated segmentation of palpebral fissures from eye videography using a texture fusion neural network. Biomed. Signal Process. Control 2023, 85, 104820. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, X.; Zhang, J.; Bai, F.; Huang, S.; Pu, J.; Chen, W.; Wang, L. A texture-aware U-Net for identifying incomplete blinking from eye videography. Biomed. Signal Process. Control 2022, 75, 103630. [Google Scholar] [CrossRef] [PubMed]
Method | Number of Images | Metrics | ||||
---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | |
V-Net | 80 | 0 | 0.9178 | 0.8485 | 4.7179 | 1.5867 |
V-Net | 4 | 0 | 0.5043 | 0.3972 | 36.3690 | 11.0264 |
MT | 4 | 76 | 0.7916 | 0.6631 | 24.8149 | 7.0991 |
UA-MT | 4 | 76 | 0.8080 | 0.6868 | 21.7672 | 6.5760 |
SASSNet | 4 | 76 | 0.8137 | 0.6924 | 27.8814 | 8.0149 |
DTC | 4 | 76 | 0.8067 | 0.6856 | 26.6678 | 7.5836 |
PE-MT | 4 | 76 | 0.8341 | 0.7225 | 18.9836 | 5.0198 |
V-Net | 8 | 0 | 0.7610 | 0.6527 | 26.9073 | 4.8357 |
MT | 8 | 72 | 0.8631 | 0.7612 | 17.9738 | 4.5731 |
UA-MT | 8 | 72 | 0.8648 | 0.7638 | 16.7100 | 4.3400 |
SASSNet | 8 | 72 | 0.8623 | 0.7612 | 13.1187 | 3.7583 |
DTC | 8 | 72 | 0.8679 | 0.7692 | 11.6410 | 3.3986 |
PE-MT | 8 | 72 | 0.8729 | 0.7758 | 13.1082 | 3.8202 |
Dataset | Method | Number of Images | Metrics | ||||
---|---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | ||
RV | U-Net | 3 | 0 | 0.3930 | 0.2836 | 63.1196 | 30.3970 |
PE-MT | 3 | 67 | 0.4166 | 0.2998 | 62.2174 | 26.3911 | |
U-Net | 7 | 0 | 0.6323 | 0.5096 | 24.0267 | 8.4186 | |
PE-MT | 7 | 67 | 0.6199 | 0.4994 | 18.4767 | 6.1613 | |
Myo | U-Net | 3 | 0 | 0.5145 | 0.3983 | 20.1485 | 6.9656 |
PE-MT | 3 | 67 | 0.5635 | 0.4432 | 18.5294 | 7.0502 | |
U-Net | 7 | 0 | 0.7943 | 0.6704 | 8.6746 | 2.2788 | |
PE-MT | 7 | 63 | 0.7932 | 0.6675 | 9.7917 | 2.9752 | |
LV | U-Net | 3 | 0 | 0.5607 | 0.4430 | 56.9506 | 21.5382 |
PE-MT | 3 | 67 | 0.6864 | 0.5819 | 38.3050 | 13.7716 | |
U-Net | 7 | 0 | 0.8403 | 0.7427 | 29.9437 | 8.5729 | |
PE-MT | 7 | 63 | 0.8482 | 0.7511 | 34.2763 | 9.3469 |
Method | Number of Images | Metrics | ||||
---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | |
U-Net | 70 | 0 | 0.8807 | 0.7936 | 6.4722 | 1.8963 |
U-Net | 3 | 0 | 0.4894 | 0.3750 | 46.7396 | 19.6336 |
MT | 3 | 67 | 0.5457 | 0.4333 | 43.9185 | 17.3452 |
UA-MT | 3 | 67 | 0.5383 | 0.4272 | 41.3736 | 16.0410 |
SASSNet | 3 | 67 | 0.5897 | 0.4752 | 23.3788 | 8.5670 |
DTC | 3 | 67 | 0.5601 | 0.4511 | 26.4061 | 11.1162 |
PE-MT | 3 | 67 | 0.5555 | 0.4416 | 39.6839 | 15.7376 |
U-Net | 7 | 0 | 0.7556 | 0.6409 | 20.8817 | 6.4234 |
MT | 7 | 63 | 0.7483 | 0.6340 | 20.2368 | 5.6540 |
UA-MT | 7 | 63 | 0.7385 | 0.6199 | 21.0633 | 5.9992 |
SASSNet | 7 | 63 | 0.8108 | 0.7074 | 12.3803 | 3.6314 |
DTC | 7 | 63 | 0.7842 | 0.6842 | 10.1061 | 3.0190 |
PE-MT | 7 | 63 | 0.7538 | 0.6393 | 20.8482 | 6.1611 |
Dataset | Method | Number of Images | Metrics | ||||
---|---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | ||
LASC | UA-MT | 8 | 72 | 0.8648 | 0.7638 | 16.7100 | 4.3400 |
UA-MT + RUM | 8 | 72 | 0.8724 | 0.7753 | 14.4020 | 3.7612 | |
UA-MT + RUM + pEMA | 8 | 72 | 0.8729 | 0.7758 | 13.1082 | 3.8202 | |
ACDC | UA-MT | 7 | 63 | 0.7385 | 0.6199 | 21.0633 | 5.9992 |
UA-MT + RUM | 7 | 63 | 0.7429 | 0.6237 | 25.2195 | 7.3287 | |
UA-MT + RUM + pEMA | 7 | 63 | 0.7538 | 0.6393 | 20.8482 | 6.1611 |
Dataset | Number of Images | Metrics | |||||
---|---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | ||
LASC | 1 | 8 | 72 | 0.8615 | 0.7586 | 16.4457 | 3.9698 |
2 | 8 | 72 | 0.8724 | 0.7753 | 14.4020 | 3.7612 | |
3 | 8 | 72 | 0.8631 | 0.7623 | 14.7983 | 3.7027 | |
ACDC | 1 | 7 | 63 | 0.7229 | 0.6109 | 21.0683 | 6.5155 |
2 | 7 | 63 | 0.7429 | 0.6237 | 25.2195 | 7.3287 | |
3 | 7 | 63 | 0.7297 | 0.6142 | 25.6428 | 7.4772 |
Dataset | Number of Images | Metrics | |||||
---|---|---|---|---|---|---|---|
Labeled | Unlabeled | DSC | JAC | HD | ASD | ||
LASC | 0.005 | 8 | 72 | 0.7440 | 0.6084 | 21.5900 | 5.4993 |
0.001 | 8 | 72 | 0.8729 | 0.7758 | 13.1082 | 3.8202 | |
0.0005 | 8 | 72 | 0.8590 | 0.7550 | 17.7567 | 4.6438 | |
0.0001 | 8 | 72 | 0.8630 | 0.7616 | 18.6198 | 4.5289 | |
ACDC | 0.005 | 7 | 63 | 0.7026 | 0.5746 | 31.8241 | 11.4408 |
0.001 | 7 | 63 | 0.7538 | 0.6393 | 20.8482 | 6.1611 | |
0.0005 | 7 | 63 | 0.7248 | 0.6077 | 22.9209 | 6.6283 | |
0.0001 | 7 | 63 | 0.7449 | 0.6246 | 25.7077 | 7.4602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, Z.; Zhang, X.; Jiang, G.; Wu, Y.; Yu, S.; Tian, B.; Hu, M.; Xu, X.; Wu, W.; et al. PE-MT: A Perturbation-Enhanced Mean Teacher for Semi-Supervised Image Segmentation. Bioengineering 2025, 12, 453. https://doi.org/10.3390/bioengineering12050453
Wang W, Li Z, Zhang X, Jiang G, Wu Y, Yu S, Tian B, Hu M, Xu X, Wu W, et al. PE-MT: A Perturbation-Enhanced Mean Teacher for Semi-Supervised Image Segmentation. Bioengineering. 2025; 12(5):453. https://doi.org/10.3390/bioengineering12050453
Chicago/Turabian StyleWang, Wenquan, Zhongwen Li, Xiaoyun Zhang, Gaoqiang Jiang, Yabo Wu, Shuchen Yu, Bihan Tian, Mingzhe Hu, Xiaomin Xu, Wencan Wu, and et al. 2025. "PE-MT: A Perturbation-Enhanced Mean Teacher for Semi-Supervised Image Segmentation" Bioengineering 12, no. 5: 453. https://doi.org/10.3390/bioengineering12050453
APA StyleWang, W., Li, Z., Zhang, X., Jiang, G., Wu, Y., Yu, S., Tian, B., Hu, M., Xu, X., Wu, W., Yi, Q., & Wang, L. (2025). PE-MT: A Perturbation-Enhanced Mean Teacher for Semi-Supervised Image Segmentation. Bioengineering, 12(5), 453. https://doi.org/10.3390/bioengineering12050453