Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Scaffold Fabrication
2.2.2. In Vitro Biocompatibility Study
2.2.3. PrestoBlue Metabolic Assay
2.2.4. PicoGreen Assay
2.2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jyske, T.; Liimatainen, J.; Tienaho, J.; Brännström, H.; Aoki, D.; Kuroda, K.; Reshamwala, D.; Kunnas, S.; Halmemies, E.; Nakayama, E.; et al. Inspired by nature: Fiber networks functionalized with tannic acid and condensed tannin-rich extracts of Norway spruce bark show antimicrobial efficacy. Front. Bioeng. Biotechnol. 2023, 11, 1171908. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of tannic acid when used as feed flavouring for all animal species. EFSA J. 2014, 12, 3828. [Google Scholar] [CrossRef]
- Ren, A.; Zhang, W.; Thomas, H.G.; Barish, A.; Berry, S.; Kiel, J.S.; Naren, A.P. A Tannic Acid-Based Medical Food, Cesinex®, Exhibits Broad-Spectrum Antidiarrheal Properties: A Mechanistic and Clinical Study. Dig. Dis. Sci. 2012, 57, 99–108. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Inert Reassessment Document for Tannin—CAS No. 1401-55-4. Available online: https://www.epa.gov/ingredients-used-pesticide-products/inert-reassessment-document-tannin-cas-no-1401-55-4 (accessed on 18 October 2023).
- Jin, S.M.; Cho, J.H.; Gwak, Y.; Park, S.H.; Choi, K.; Choi, J.-H.; Shin, H.S.; Hong, J.; Bae, Y.-S.; Ju, J.; et al. Transformable Gel-to-Nanovaccine Enhances Cancer Immunotherapy via Metronomic-Like Immunomodulation and Collagen-Mediated Paracortex Delivery. Adv. Mater. 2024, 36, 2409914. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Yu, X.; Fan, D. Nanocomposite Hydrogel for Real-Time Wound Status Monitoring and Comprehensive Treatment. Adv. Sci. 2024, 11, 2405924. [Google Scholar] [CrossRef]
- Cometta, S.; Donose, B.C.; Juárez-Saldivar, A.; Ravichandran, A.; Xu, Y.; Bock, N.; Dargaville, T.R.; Rakić, A.D.; Hutmacher, D.W. Unravelling the physicochemical and antimicrobial mechanisms of human serum albumin/tannic acid coatings for medical-grade polycaprolactone scaffolds. Bioact. Mater. 2024, 42, 68–84. [Google Scholar] [CrossRef]
- Hosseini, M.; Moghaddam, L.; Barner, L.; Cometta, S.; Hutmacher, D.W.; Medeiros Savi, F. The multifaceted role of tannic acid: From its extraction and structure to antibacterial properties and applications. Progress. Polym. Sci. 2025, 160, 101908. [Google Scholar] [CrossRef]
- Shin, M.; Ryu, J.H.; Park, J.P.; Kim, K.; Yang, J.W.; Lee, H. DNA/Tannic Acid Hybrid Gel Exhibiting Biodegradability, Extensibility, Tissue Adhesiveness, and Hemostatic Ability. Adv. Funct. Mater. 2015, 25, 1270–1278. [Google Scholar] [CrossRef]
- Han, J.; Cui, Y.; Gu, Z.; Yang, D. Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 2021, 273, 120846. [Google Scholar] [CrossRef]
- Nwe, M.K.; Jangpromma, N.; Taemaitree, L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci. Rep. 2024, 14, 5916. [Google Scholar] [CrossRef]
- Kontanis, E.J.; Reed, F.A. Evaluation of Real-Time PCR Amplification Efficiencies to Detect PCR Inhibitors. J. Forensic Sci. 2006, 51, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Opel, K.L.; Chung, D.; McCord, B.R. A Study of PCR Inhibition Mechanisms Using Real Time PCR. J. Forensic Sci. 2010, 55, 25–33. [Google Scholar] [CrossRef]
- Labieniec, M.; Gabryelak, T. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method. J. Photochem. Photobiol. B Biol. 2006, 82, 72–78. [Google Scholar] [CrossRef]
- Xie, L.; Wehling, R.L.; Ciftci, O.; Zhang, Y. Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Res. Int. 2017, 102, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS ONE 2010, 5, e10202. [Google Scholar] [CrossRef] [PubMed]
- Terrón, M.C.; López-Fernández, M.; Carbajo, J.M.; Junca, H.; Téllez, A.; Yagüe, S.; Arana-Cuenca, A.; González, T.; González, A.E. Tannic acid interferes with the commonly used laccase-detection assay based on ABTS as the substrate. Biochimie 2004, 86, 519–522. [Google Scholar] [CrossRef]
- Cometta, S.; Bock, N.; Suresh, S.; Dargaville, T.R.; Hutmacher, D.W. Antibacterial Albumin-Tannic Acid Coatings for Scaffold-Guided Breast Reconstruction. Front. Bioeng. Biotechnol. 2021, 9, 638577. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, F.; Ho, S.T.; Woodruff, M.A.; Lim, T.M.; Hutmacher, D.W. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 2007, 28, 814–824. [Google Scholar] [CrossRef]
- Vaquette, C.; Saifzadeh, S.; Farag, A.; Hutmacher, D.W.; Ivanovski, S. Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets. J. Dent. Res. 2019, 98, 673–681. [Google Scholar] [CrossRef]
- Singer, V.L.; Jones, L.J.; Yue, S.T.; Haugland, R.P. Characterization of PicoGreen Reagent and Development of a Fluorescence-Based Solution Assay for Double-Stranded DNA Quantitation. Anal. Biochem. 1997, 249, 228–238. [Google Scholar] [CrossRef]
- Koba, M.; Szostek, A.; Konopa, J. Limitation of usage of PicoGreen dye in quantitative assays of double-stranded DNA in the presence of intercalating compounds. Acta Biochim. Pol. 2007, 54, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Koonjul, P.K.; Brandt, W.F.; Farrant, J.M.; Lindsey, G.G. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res. 1999, 27, 915–916. [Google Scholar] [CrossRef]
- Snirc, A.; Silberfeld, T.; Bonnet, J.; Tillier, A.; Tuffet, S.; Sun, J.-S. Optimization of Dna Extraction from Brown Algae (phaeophyceae) Based on a Commercial Kit. J. Phycol. 2010, 46, 616–621. [Google Scholar] [CrossRef]
- Liu, F.; Sheng, S.; Shao, D.; Xiao, Y.; Zhong, Y.; Zhou, J.; Quek, C.H.; Wang, Y.; Dawulieti, J.; Yang, C.; et al. Targeting multiple mediators of sepsis using multifunctional tannic acid-Zn2+-gentamicin nanoparticles. Matter 2021, 4, 3677–3695. [Google Scholar] [CrossRef]
- Akter, S.; Addepalli, R.; Netzel, M.E.; Tinggi, U.; Fletcher, M.T.; Sultanbawa, Y.; Osborne, S.A. Antioxidant-Rich Extracts of Terminalia ferdinandiana Interfere with Estimation of Cell Viability. Antioxidants 2019, 8, 191. [Google Scholar] [CrossRef]
- Jones, L.J.; Gray, M.; Yue, S.T.; Haugland, R.P.; Singer, V.L. Sensitive determination of cell number using the CyQUANT® cell proliferation assay. J. Immunol. Methods 2001, 254, 85–98. [Google Scholar] [CrossRef]
- Czekanska, E.M. Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol. Biol. 2011, 740, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Allen, M.; Millett, P.; Dawes, E.; Rushton, N. Lactate dehydrogenase activity as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin. Mater. 1994, 16, 189–194. [Google Scholar] [CrossRef]
- Boyd, V.; Cholewa, O.M.; Papas, K.K. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans. Curr. Trends Biotechnol. Pharm. 2008, 2, 66–84. [Google Scholar]
Assay | Principle | Limitations | Possible Interactions with TA | Key References |
---|---|---|---|---|
PicoGreen | Fluorescent dye selectively binds to double-stranded DNA; fluorescence correlates with DNA content. Limit of detection: 25 pg/mL ds DNA, ~100 cells. | Fluorescence intensity can be affected by salts or other compounds; quenching and binding interference may alter results. | TA binds DNA and may block dye binding or quench fluorescence, reducing signal. | [21,22] |
CyQuant | Fluorescent dye binds DNA; fluorescence proportional to cell number. Limit of detection: 10–50 cells. | Quenching agents can interfere; CyQUANT binds all DNA and cannot distinguish between live, dead, and apoptotic cells. | TA may bind DNA and/or quench CyQuant fluorescence. | [27] |
Alamar Blue/ PrestoBlue | Resazurin is reduced to fluorescent resorufin by metabolically active cells. | Non-specific reduction by redox-active compounds and interference from test compounds can affect resorufin fluorescence, depending on assay conditions. | TA may reduce resazurin, causing false viability results, and interfere with fluorescence by quenching or obscuring the solution. | [28] |
MTT | Yellow MTT salt is reduced to purple formazan by mitochondrial enzymes in viable cells. | Results can be influenced by factors such as cell density, medium composition, and the presence of chemicals or nanoparticles that non-specifically reduce MTT salts. Insoluble formazan can also damage cell structure. | TA’s reductive properties may reduce MTT directly, generating false-positive signals. | [16,29] |
LDH | Measures lactate dehydrogenase released from damaged cells into the medium. | Lack of specificity, as LDH is released not only during cell death but also in response to cell stress or injury. The assay can be affected by interfering compounds that influence LDH activity or absorption readings, leading to false positives. | TA may inhibit or denature LDH enzyme activity, affecting signal strength. | [30] |
Live/Dead imaging | FDA: Membrane-permeable dye hydrolyzed by esterases in viable cells to produce green-fluorescent fluorescein. PI: Membrane-impermeable dye that stains DNA of dead cells, emitting red fluorescence. Other dyes: Calcein-AM, SYTOX Green, Hoechst, EthD-1. | Fluorescence quenching; presence of other DNA-binding molecules can interfere with the specific labeling of dead cells; qualitative. | TA may quench fluorophores or interfere with DNA-binding dyes such as PI or EthD-1. | [14,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cometta, S.; Hutmacher, D.W. Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays. Bioengineering 2025, 12, 660. https://doi.org/10.3390/bioengineering12060660
Cometta S, Hutmacher DW. Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays. Bioengineering. 2025; 12(6):660. https://doi.org/10.3390/bioengineering12060660
Chicago/Turabian StyleCometta, Silvia, and Dietmar Werner Hutmacher. 2025. "Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays" Bioengineering 12, no. 6: 660. https://doi.org/10.3390/bioengineering12060660
APA StyleCometta, S., & Hutmacher, D. W. (2025). Assessing the Biocompatibility of Tannic Acid-Based Biomaterials: Addressing Challenges in Standard Cytotoxic Assays. Bioengineering, 12(6), 660. https://doi.org/10.3390/bioengineering12060660