Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection and Protocols
2.2. Overall Framework of the Method
2.3. Multi-Modal Features Extraction
2.3.1. Motion Feature Extraction Based on IMU
Algorithm 1 Static–dynamic IMU calibration procedure | |
Input: Sampling frequency Hz, static duration s, gait cycle T, raw IMU acceleration , displacement per gait cycle | |
Output: Mounting misalignment angles | |
| |
static misalignment about y,z | |
| |
misalignment about x | |
| |
Output: |
- (1)
- Stride Length (SL): The anterior displacement of the ankle joint during one complete gait cycle.
- (2)
- Gait Cycle Duration (GC): The temporal duration of one complete gait cycle.
- (3)
- Swing Phase Ratio (SPR): The proportion of the gait cycle occupied by the swing phase.
- (4)
- Mean Gait Speed (MGS): The average walking speed over one gait cycle.
- (5)
- Maximum Foot Clearance (MFC): The maximum vertical (x-axis) displacement of the ankle joint—i.e., the peak foot lift—within one gait cycle.
- (6)
- Shank Range of Motion (SR): The angular excursion of the shank segment during one complete gait cycle.
2.3.2. Time–Frequency Feature Extraction Based on EMG
2.4. Convolutional Network Design and Fusion Detection Method
2.4.1. Multi-Module Convolutional Network Design
(1) Diagnosis Head
(2) Evaluation Head
(3) Balance Head
2.4.2. Fusion Detection Method
- If the diagnosis head classifies a subject as healthy, the final assessment head cannot output Level 2; additionally, the Level 1 threshold is raised from 0.5 to 0.7.
- If the diagnosis head classifies a subject as Parkinson’s positive, the Level 0 threshold in the assessment head is raised from 0.5 to 0.7.
- If the balance head indicates no severe balance impairment, the Level 2 threshold in the assessment head is raised from 0.5 to 0.7.
- If the balance head indicates severe balance impairment, the final assessment head cannot output Level 0; therefore, the Level 1 threshold is raised from 0.5 to 0.7.
- The final rating must be exactly one of {0, 1, 2}; simultaneous assignment to multiple levels is not permitted.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Prim. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Borzì, L.; Rinaldi, D.; Artusi, C.A.; Imbalzano, G.; Patera, M.; Lopiano, L.; Pontieri, F.; Olmo, G.; Suppa, A. Unveiling the unpredictable in Parkinson’s disease: Sensor-based monitoring of dyskinesias and freezing of gait in daily life. Bioengineering 2024, 11, 440. [Google Scholar] [CrossRef]
- Parisi, F.; Ferrari, G.; Giuberti, M.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Inertial BSN-based characterization and automatic UPDRS evaluation of the gait task of Parkinsonians. IEEE Trans. Affect. Comput. 2016, 7, 258–271. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xiong, F.; Zhang, W. Gait recognition using optical motion capture: A decision fusion based method. Sensors 2021, 21, 3496. [Google Scholar] [CrossRef]
- Castagna, A.; Frittoli, S.; Ferrarin, M.; Del Sorbo, F.; Romito, L.M.; Elia, A.E.; Albanese, A. Quantitative gait analysis in parkin disease: Possible role of dystonia. Mov. Disord. 2016, 31, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Ripic, Z.; Signorile, J.F.; Best, T.M.; Jacobs, K.A.; Nienhuis, M.; Whitelaw, C.; Moenning, C.; Eltoukhy, M. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson’s disease. J. Biomech. 2023, 155, 111645. [Google Scholar] [CrossRef]
- Kaur, R.; Motl, R.W.; Sowers, R.; Hernandez, M.E. A vision-based framework for predicting multiple sclerosis and Parkinson’s disease gait dysfunctions—A deep learning approach. IEEE J. Biomed. Health Inform. 2022, 27, 190–201. [Google Scholar] [CrossRef]
- Tan, V.W.S.; Ooi, W.X.; Chan, Y.F.; Connie, T.; Goh, M.K.O. Vision-based gait analysis for neurodegenerative disorders detection. J. Inform. Web Eng. 2024, 3, 136–154. [Google Scholar] [CrossRef]
- Yin, J.; Qiao, Z.; Han, L.; Zhang, X. EEG-based emotion recognition with autoencoder feature fusion and MSC-TimesNet model. Comput. Methods Biomech. Biomed. Eng. 2025, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mughal, H.; Javed, A.R.; Rizwan, M.; Almadhor, A.S.; Kryvinska, N. Parkinson’s disease management via wearable sensors: A systematic review. IEEE Access 2022, 10, 35219–35237. [Google Scholar] [CrossRef]
- Trabassi, D.; Serrao, M.; Varrecchia, T.; Ranavolo, A.; Coppola, G.; De Icco, R.; Tassorelli, C.; Castiglia, S.F. Machine learning approach to support the detection of Parkinson’s disease in IMU-based gait analysis. Sensors 2022, 22, 3700. [Google Scholar] [CrossRef]
- Bikias, T.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Hadjileontiadis, L.J. DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning. Front. Robot. AI 2021, 8, 537384. [Google Scholar] [CrossRef] [PubMed]
- Perilli, S.; Di Pietro, M.; Mantini, E.; Regazzetti, M.; Kiper, P.; Galliani, F.; Panella, M.; Mantini, D. Development of a Wearable Electromyographic Sensor with Aerosol Jet Printing Technology. Bioengineering 2024, 11, 1283. [Google Scholar] [CrossRef]
- Zhu, P.; Niu, M.; Liang, S.; Yang, W.; Zhang, Y.; Chen, K.; Pan, Z.; Mao, Y. Non-hand-worn, load-free VR hand rehabilitation system assisted by deep learning based on ionic hydrogel. Nano Res. 2025, 18, 94907301. [Google Scholar] [CrossRef]
- Lu, L.; Hu, G.; Liu, J.; Yang, B. 5G nb-IoT system integrated with high-performance fiber sensor inspired by cirrus and spider structures. Adv. Sci. 2024, 11, 2309894. [Google Scholar] [CrossRef]
- Fricke, C.; Alizadeh, J.; Zakhary, N.; Woost, T.B.; Bogdan, M.; Classen, J. Evaluation of three machine learning algorithms for the automatic classification of EMG patterns in gait disorders. Front. Neurol. 2021, 12, 666458. [Google Scholar] [CrossRef]
- Rezaee, K.; Savarkar, S.; Yu, X.; Zhang, J. A hybrid deep transfer learning-based approach for Parkinson’s disease classification in surface electromyography signals. Biomed. Signal Process. Control 2022, 71, 103161. [Google Scholar] [CrossRef]
- Kleinholdermann, U.; Wullstein, M.; Pedrosa, D. Prediction of motor Unified Parkinson’s Disease Rating Scale scores in patients with Parkinson’s disease using surface electromyography. Clin. Neurophysiol. 2021, 132, 1708–1713. [Google Scholar] [CrossRef]
- Bremm, R.P.; Pavelka, L.; Garcia, M.M.; Mombaerts, L.; Krüger, R.; Hertel, F. Sensor-based quantification of MDS-UPDRS III subitems in Parkinson’s disease using machine learning. Sensors 2024, 24, 2195. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, X.; Zhang, N.; Zhang, X.; Zhang, B.; Wang, S.; Liu, T.; Yi, J. Automatic assessments of parkinsonian gait with wearable sensors for human assistive systems. Sensors 2023, 23, 2104. [Google Scholar] [CrossRef] [PubMed]
- Hori, K.; Mao, Y.; Ono, Y.; Ora, H.; Hirobe, Y.; Sawada, H.; Inaba, A.; Orimo, S.; Miyake, Y. Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis. Front. Physiol. 2020, 10, 1530. [Google Scholar] [CrossRef]
- Niswander, W.; Kontson, K. Evaluating the impact of imu sensor location and walking task on accuracy of gait event detection algorithms. Sensors 2021, 21, 3989. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Zeng, H.; Zhang, X.; Liu, T. A Dual-module Driven Method for Foot Posture Indirect Measurement with Potential Application in Rehabilitation Robots. IEEE Trans. Instrum. Meas. 2025, 74, 4011009. [Google Scholar] [CrossRef]
- Caliandro, P.; Ferrarin, M.; Cioni, M.; Bentivoglio, A.R.; Minciotti, I.; D’urso, P.; Tonali, P.A.; Padua, L. Levodopa effect on electromyographic activation patterns of tibialis anterior muscle during walking in Parkinson’s disease. Gait Posture 2011, 33, 436–441. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Janssens, L.; Stijn, V. Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease. Brain 2004, 127, 1650–1660. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Y.; Liu, X.; Gu, Y.; Li, T.; Yin, J.; Liu, T. A Novel Approach for Visual Speech Recognition Using the Partition-Time Masking and Swin Transformer 3D Convolutional Model. Sensors 2025, 25, 2366. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zhang, B.; Zhou, B.; He, Z.; Liu, T. An IMU-based ground reaction force estimation method and its application in walking balance assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 32, 223–232. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, B.; Zhang, B.; Liu, T. A potential-real-time thigh orientation prediction method based on two shanks-mounted IMUs and its clinical application. IEEE Trans. Autom. Sci. Eng. 2022, 21, 696–705. [Google Scholar] [CrossRef]
- Sifuzzaman, M.; Islam, M.R.; Ali, M.Z. Application of Wavelet Transform and Its Advantages Compared to Fourier Transfor; Vidyasagar University: Midnapore, India, 2009. [Google Scholar]
- Márquez-Figueroa, S.; Shmaliy, Y.S.; Ibarra-Manzano, O. Analysis and smoothing of EMG signal envelope using Kalman and UFIR filtering under colored measurement noise. MATEC Web Conf. 2019, 292, 04002. [Google Scholar] [CrossRef]
- Ranaldi, S.; De Marchis, C.; Conforto, S. An automatic, adaptive, information-based algorithm for the extraction of the sEMG envelope. J. Electromyogr. Kinesiol. 2018, 42, 1–9. [Google Scholar] [CrossRef]
- Yin, W.; Zhu, W.; Gao, H.; Niu, X.; Shen, C.; Fan, X.; Wang, C. Gait analysis in the early stage of Parkinson’s disease with a machine learning approach. Front. Neurol. 2024, 15, 1472956. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.A.; Corona, F.; Murgia, M.; Pili, R.; Pau, M.; Côté, J.N. Electromyographical gait characteristics in Parkinson’s disease: Effects of combined physical therapy and rhythmic auditory stimulation. Front. Neurol. 2018, 9, 211. [Google Scholar] [CrossRef]
- Islam, A.; Alcock, L.; Nazarpour, K.; Rochester, L.; Pantall, A. Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: A systematic review. NPJ Park. Dis. 2020, 6, 22. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Li, Q.; Liu, T.; Yi, J. IMU-based gait normalcy index calculation for clinical evaluation of impaired gait. IEEE J. Biomed. Health Inform. 2020, 25, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Parisi, F.; Ferrari, G.; Giuberti, M.; Contin, L.; Cimolin, V.; Azzaro, C.; Albani, G.; Mauro, A. Body-sensor-network-based kinematic characterization and comparative outlook of UPDRS scoring in leg agility, sit-to-stand, and gait tasks in Parkinson’s disease. IEEE J. Biomed. Health Inform. 2015, 19, 1777–1793. [Google Scholar] [CrossRef]
- Endo, M.; Poston, K.L.; Sullivan, E.V.; Fei-Fei, L.; Pohl, K.M.; Adeli, E. Gaitforemer: Self-supervised pre-training of transformers via human motion forecasting for few-shot gait impairment severity estimation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2022. MICCAI 2022; Springer: Cham, Switzerland, 2022; pp. 130–139. [Google Scholar] [CrossRef]
- Ji, M.; Ren, R.; Zhang, W.; Xu, Q. Automatic Parkinson’s disease diagnosis with wearable sensor technology for medical robot. Electronics 2024, 13, 2816. [Google Scholar] [CrossRef]
Subjects | UPDRS | Height/cm | Weight/kg | Age | Number |
---|---|---|---|---|---|
HC | 0 | 170 ± 7 | 68 ± 8 | 25 ± 3 | 10 |
PD | 1 | 162 ± 5 | 65 ± 10 | 62 ± 4 | 5 |
PD | 2 | 163 ± 4 | 63 ± 5 | 68 ± 7 | 6 |
Feature | HC vs. PD1 | HC vs. PD2 | PD1 vs. PD2 | |||
---|---|---|---|---|---|---|
d | Power | d | Power | d | Power | |
SL/H | 1.34 | 0.996 | 2.46 | 1.000 | 1.08 | 0.707 |
GC | 0.26 | 0.176 | –0.34 | 0.656 | –0.39 | 0.235 |
SPR | 0.23 | 0.095 | 1.46 | 0.996 | 1.45 | 0.999 |
MGS | 0.73 | 0.503 | –0.13 | 0.403 | –0.23 | 0.966 |
MFC/H | 0.56 | 0.300 | 0.47 | 0.334 | 0.03 | 0.054 |
SR (rad) | 1.63 | 1.000 | 2.74 | 1.000 | 1.02 | 0.591 |
Metric | Baseline (Mean ± Std, 95% CI) | Fusion (Mean ± Std, 95% CI) |
---|---|---|
Overall Accuracy | 0.655 ± 0.185, [0.571, 0.739] | 0.929 ± 0.140, [0.865, 0.992] |
Class 0 Precision | 0.667 ± 0.255 | 0.952 ± 0.120 |
Class 0 Recall | 0.690 ± 0.370 | 0.952 ± 0.150 |
Class 1 Precision | 0.417 ± 0.359 | 0.929 ± 0.239 |
Class 1 Recall | 0.381 ± 0.498 | 0.952 ± 0.218 |
Class 2 Precision | 0.944 ± 0.162 | 0.972 ± 0.118 |
Class 2 Recall | 0.857 ± 0.359 | 0.857 ± 0.359 |
Researcher | Performance | Hardware Platform | Subjects | Methods |
---|---|---|---|---|
Urs [20] | R = 0.739 | 8 EMG | 45 | Random Forest |
Han [22] | 84.9% | 2 IMU | 53 | Nonlinear Models |
Federico [38] | 66.5% | 3 IMU | 34 | Support Vector Machine |
Endo [39] | 79% | Camera | 54 | Transformer Models |
Ji [40] | 95.35% | 1 IMU + 1 pressure sensor | 50 | Support Vector Machine |
This paper | 92.8% | 2 IMU + 4 EMG | 21 | Multi-head Fusion Classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, X.; Li, J.; Pan, W.; Sun, Y.; Lin, S.; Liu, T. Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning. Bioengineering 2025, 12, 686. https://doi.org/10.3390/bioengineering12070686
Liu X, Zhang X, Li J, Pan W, Sun Y, Lin S, Liu T. Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning. Bioengineering. 2025; 12(7):686. https://doi.org/10.3390/bioengineering12070686
Chicago/Turabian StyleLiu, Xiangzhi, Xiangliang Zhang, Juan Li, Wenhao Pan, Yiping Sun, Shuanggen Lin, and Tao Liu. 2025. "Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning" Bioengineering 12, no. 7: 686. https://doi.org/10.3390/bioengineering12070686
APA StyleLiu, X., Zhang, X., Li, J., Pan, W., Sun, Y., Lin, S., & Liu, T. (2025). Automated UPDRS Gait Scoring Using Wearable Sensor Fusion and Deep Learning. Bioengineering, 12(7), 686. https://doi.org/10.3390/bioengineering12070686