Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment
Abstract
1. Introduction
2. Review
2.1. Type I
2.2. Type II
2.3. Type III
2.4. Type IV
3. Conclusions
Funding
Conflicts of Interest
References
- Stevens, D.L.; Bryant, A.E. Necrotizing Soft-Tissue Infections. N. Engl. J. Med. 2017, 377, 2253–2265. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C.; et al. Executive Summary: Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, 147–159. [Google Scholar] [CrossRef]
- Bonne, S.L.; Kadri, S.S. Evaluation and Management of Necrotizing Soft Tissue Infections. Infect. Dis. Clin. N. Am. 2017, 31, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Ali, S.M.; Singh, P.K. Necrotizing fasciitis and gas gangrene due to Aeromonas hydrophila in an immunocompetent host: A rare entity. IDCases 2022, 28, e01508. [Google Scholar] [CrossRef]
- Brook, I.; Frazier, E.H. Clinical and microbiological features of necrotizing fasciitis. J. Clin. Microbiol. 1995, 33, 2382–2387. [Google Scholar] [CrossRef]
- Green, R.J.; Dafoe, D.C.; Rajfin, T.A. Necrotizing Fasciitis. Chest 1996, 110, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Bersoff-Matcha, S.J.; Chamberlain, C.; Cao, C.; Kortepeter, C.; Chong, W.H. Fournier Gangrene Associated With Sodium–Glucose Cotransporter-2 Inhibitors. Ann. Intern. Med. 2019, 170, 764–769. [Google Scholar] [CrossRef]
- Urbina, T.; Razazi, K.; Ourghanlian, C.; Woerther, P.-L.; Chosidow, O.; Lepeule, R.; de Prost, N. Antibiotics in Necrotizing Soft Tissue Infections. Antibiotics 2021, 10, 1104. [Google Scholar] [CrossRef]
- Venugopalan, V.; Maranchick, N.; Hanai, D.; Hernandez, Y.J.; Joseph, Y.; Gore, A.; Desear, K.; Peloquin, C.; Neely, M.; Felton, T.; et al. Association of piperacillin and vancomycin exposure on acute kidney injury during combination therapy. JAC-Antimicrob. Resist. 2023, 6, dlad157. [Google Scholar] [CrossRef] [PubMed]
- D’aMico, H.; Wallace, K.L.; Burgess, D.; Burgess, D.S.; Cotner, S.; Mynatt, R.; Li, N.; Stromberg, A.; VanHoose, J. Acute Kidney Injury Associated with Area under the Curve versus Trough Monitoring of Vancomycin in Obese Patients. Antimicrob. Agents Chemother. 2022, 66, e0088621. [Google Scholar] [CrossRef]
- Horn, D.L.; Chan, J.D.; Li, K.; Bulger, E.M.; Lynch, J.B.; Robinson, B.R.; Bryson-Cahn, C. Defining the Optimal Antibiotic Duration in Necrotizing Skin and Soft Tissue Infections: Clinical Experience from a Quaternary Referral Center. Surg. Infect. 2023, 24, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Blackman, A.L.; Jarugula, P.; Nicolau, D.P.; Chui, S.H.; Joshi, M.; Heil, E.L.; Gopalakrishnan, M. Evaluation of Linezolid Pharmacokinetics in Critically Ill Obese Patients with Severe Skin and Soft Tissue Infections. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Simon, P.; Busse, D.; Petroff, D.; Dorn, C.; Ehmann, L.; Hochstädt, S.; Girrbach, F.; Dietrich, A.; Zeitlinger, M.; Kees, F.; et al. Linezolid Concentrations in Plasma and Subcutaneous Tissue are Reduced in Obese Patients, Resulting in a Higher Risk of Underdosing in Critically Ill Patients: A Controlled Clinical Pharmacokinetic Study. J. Clin. Med. 2020, 9, 1067. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Mantzarlis, K.; Malliotakis, P.; Koulouras, V.; DeGroote, S.; Koulenti, D.; Blot, S.; Boussery, K.; Van Bocxlaer, J.; Colin, P. Pharmacokinetic evaluation of linezolid administered intravenously in obese patients with pneumonia. J. Antimicrob. Chemother. 2019, 74, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.R.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. Continuous Infusion of Beta-Lactam Antibiotics in Severe Sepsis: A Multicenter Double-Blind, Randomized Controlled Trial. Clin. Infect. Dis. 2013, 56, 236–244. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; E Falagas, M. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Sulaiman, H.; Mat-Nor, M.-B.; Rai, V.; Wong, K.K.; Hasan, M.S.; Rahman, A.N.A.; Jamal, J.A.; Wallis, S.C.; Lipman, J.; et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensiv. Care Med. 2016, 42, 1535–1545. [Google Scholar] [CrossRef]
- Lauerman, M.H.; Kolesnik, O.; Sethuraman, K.; Rabinowitz, R.; Joshi, M.; Clark, E.; Stein, D.; Scalea, T.; Henry, S. Less is more? Antibiotic duration and outcomes in Fournier’s gangrene. J. Trauma Acute Care Surg. 2017, 83, 443–448. [Google Scholar] [CrossRef]
- Narsana, M.M.; Schrank, G.M.M.; Leuthy, P.P.; Rabinowitz, R.M. Necrotizing Soft Tissue Infections Involving Actinomyces Species Identified by the Matrix-Assisted Laser Desorption Ionzation Time-of-Flight (MALDI-TOF); New But Not Improved; The National Institutes of Health: Bethesda, MD, USA, 2019.
- Burnham, J.P.; Kollef, M.H. Treatment of severe skin and soft tissue infections: A review. Curr. Opin. Infect. Dis. 2018, 31, 113–119. [Google Scholar] [CrossRef]
- Kadri, S.S.; Swihart, B.J.; Bonne, S.L.; Hohmann, S.F.; Hennessy, L.V.; Louras, P.; Evans, H.L.; Rhee, C.; Suffredini, A.F.; Hooper, D.C.; et al. Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A Propensity Score–Matched Analysis From 130 US Hospitals. Clin. Infect. Dis. 2017, 64, 877–885. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Group A Strep Disease Surveillance and Trends. Available online: https://www.cdc.gov/group-a-strep/php/surveillance/ (accessed on 21 April 2025).
- Center for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report—Emerging Infections Program Network—Group A Streptococcus, 2022. Available online: https://www.cdc.gov/abcs/downloads/GAS_Surveillance_Report_2022.pdf (accessed on 22 April 2025).
- Gregory, C.J.; Okaro, J.O.; Reingold, A.; Chai, S.; Herlihy, R.; Petit, S.; Farley, M.M.; Harrison, L.H.; Como-Sabetti, K.; Lynfield, R.; et al. Invasive Group A Streptococcal Infections in 10 US States. JAMA 2025, 333, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection—Multi-Country; WHO: Geneva, Switzerland, 2022.
- Vlaminckx, B.J.M.; Schuren, F.H.J.; Montijn, R.C.; Caspers, M.P.M.; Fluit, A.C.; Wannet, W.J.B.; Schouls, L.M.; Verhoef, J.; Jansen, W.T.M. Determination of the Relationship between Group A Streptococcal Genome Content, M Type, and Toxic Shock Syndrome by a Mixed Genome Microarray. Infect. Immun. 2007, 75, 2603–2611. [Google Scholar] [CrossRef]
- Walker, M.J.; Barnett, T.C.; McArthur, J.D.; Cole, J.N.; Gillen, C.M.; Henningham, A.; Sriprakash, K.S.; Sanderson-Smith, M.L.; Nizet, V. Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus. Clin. Microbiol. Rev. 2014, 27, 264–301. [Google Scholar] [CrossRef]
- Iyer, V.; Sagar, V.; Toor, D.; Lyngdoh, V.; Nongrum, G.; Kapoor, M.; Chakraborti, A. Group A Streptococcus Infections: Their Mechanisms, Epidemiology, and Current Scope of Vaccines. Cureus 2022, 14, e33146. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Jacoby, P.; Carville, K.; Ang, S.-J.J.; Curtis, N.; Andrews, R. Effectiveness of Clindamycin and Intravenous Immunoglobulin, and Risk of Disease in Contacts, in Invasive Group A Streptococcal Infections. Clin. Infect. Dis. 2014, 59, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Babiker, A.; Li, X.; Lai, Y.L.; Strich, J.R.; Warner, S.; Sarzynski, S.; Dekker, J.P.; Danner, R.L.; Kadri, S.S. Effectiveness of adjunctive clindamycin in β-lactam antibiotic-treated patients with invasive β-haemolytic streptococcal infections in US hospitals: A retrospective multicentre cohort study. Lancet Infect. Dis. 2021, 21, 697–710. [Google Scholar] [CrossRef]
- Coyle, E.A.; Cha, R.; Rybak, M.J. Influences of Linezolid, Penicillin, and Clindamycin, Alone and in Combination, on Streptococcal Pyrogenic Exotoxin A Release. Antimicrob. Agents Chemother. 2003, 47, 1752–1755. [Google Scholar] [CrossRef]
- Babiker, A.; Warner, S.; Li, X.; A Chishti, E.; Saad, E.; Swihart, B.J.; Dekker, J.P.; Walker, M.; Lawandi, A.; Kadri, S.S.; et al. Adjunctive linezolid versus clindamycin for toxin inhibition in β-lactam-treated patients with invasive group A streptococcal infections in 195 US hospitals from 2016 to 2021: A retrospective cohort study with target trial emulation. Lancet Infect. Dis. 2025, 25, 265–275. [Google Scholar] [CrossRef]
- Heil, E.L.; Kaur, H.; Atalla, A.; Basappa, S.; Mathew, M.; Seung, H.; Johnson, J.K.; Schrank, G.M. Comparison of Adjuvant Clindamycin vs Linezolid for Severe Invasive Group A Streptococcus Skin and Soft Tissue Infections. Open Forum Infect. Dis. 2023, 10, ofad588. [Google Scholar] [CrossRef]
- Lappin, E.; Ferguson, A.J. Gram-positive toxic shock syndromes. Lancet Infect. Dis. 2009, 9, 281–290. [Google Scholar] [CrossRef]
- Bergsten, H.; Madsen, M.B.; Bergey, F.; Hyldegaard, O.; Skrede, S.; Arnell, P.; Oppegaard, O.; Itzek, A.; Perner, A.; Svensson, M.; et al. Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections. Clin. Infect. Dis. 2020, 71, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.J. Recognition and management of Staphylococcus aureus toxin-mediated disease. Intern. Med. J. 2005, 35, S106–S119. [Google Scholar] [CrossRef]
- Linner, A.; Darenberg, J.; Sjolin, J.; Henriques-Normark, B.; Norrby-Teglund, A. Clinical Efficacy of Polyspecific Intravenous Immunoglobulin Therapy in Patients With Streptococcal Toxic Shock Syndrome: A Comparative Observational Study. Clin. Infect. Dis. 2014, 59, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Darenberg, J.; Ihendyane, N.; Sjölin, J.; Aufwerber, E.; Haidl, S.; Follin, P.; Andersson, J.; Norrby-Teglund, A.; The Streptlg Study Group. Intravenous Immunoglobulin G Therapy in Streptococcal Toxic Shock Syndrome: A European Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2003, 37, 333–340. [Google Scholar] [CrossRef]
- Madsen, M.B.; Hjortrup, P.B.; Hansen, M.B.; Lange, T.; Norrby-Teglund, A.; Hyldegaard, O.; Perner, A. Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): A randomised, blinded, placebo-controlled trial. Intensiv. Care Med. 2017, 43, 1585–1593. [Google Scholar] [CrossRef]
- Shah, S.S.; Hall, M.; Srivastava, R.; Subramony, A.; Levin, J.E. Intravenous Immunoglobulin in Children with Streptococcal Toxic Shock Syndrome. Clin. Infect. Dis. 2009, 49, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Parks, T.; Wilson, C.; Curtis, N.; Norrby-Teglund, A.; Sriskandan, S. Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2018, 67, 1434–1436. [Google Scholar] [CrossRef]
- Bennett, M.; Kaide, C.G.; Matheson, E.; Bari, V. Hyperbaric Oxygen Therapy and Utilization in Infectious Disease. Curr. Emerg. Hosp. Med. Rep. 2018, 6, 101–109. [Google Scholar] [CrossRef]
- Huang, K.-C.; Weng, H.-H.; Yang, T.-Y.; Chang, T.-S.; Huang, T.-W.; Lee, M.S. Distribution of Fatal Vibrio Vulnificus Necrotizing Skin and Soft-Tissue Infections. Medicine 2016, 95, e2627. [Google Scholar] [CrossRef]
- Leng, F.; Lin, S.; Wu, W.; Zhang, J.; Song, J.; Zhong, M. Epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection: A case report and literature review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1999–2004. [Google Scholar] [CrossRef]
- Grilo, M.L.; Pereira, A.; Sousa-Santos, C.; Robalo, J.I.; Oliveira, M. Climatic Alterations Influence Bacterial Growth, Biofilm Production and Antimicrobial Resistance Profiles in Aeromonas spp. Antibiotics 2021, 10, 1008. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.; Brown, A.M.; Luscombe, G.M.; Wong, S.J.; Mendis, K. Antibiotic use for Vibrio infections: Important insights from surveillance data. BMC Infect. Dis. 2015, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Aravena-Román, M.; Inglis, T.J.J.; Henderson, B.; Riley, T.V.; Chang, B.J. Antimicrobial Susceptibilities of Aeromonas Strains Isolated from Clinical and Environmental Sources to 26 Antimicrobial Agents. Antimicrob. Agents Chemother. 2012, 56, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Kyles, D.M.; Baltimore, J. Adjunctive use of plasmapheresis and intravenous immunoglobulin therapy in sepsis: A case report. Am. J. Crit. Care 2005, 14, 109–112. [Google Scholar] [CrossRef]
Type | Most Common Pathogens | Antimicrobial Therapies |
---|---|---|
I | Most likely aerobes: Staphylococcal aureus, Escherichia coli, Klebsiella, Proteus, Enterococcus, Enterobacter, alpha hemolytic strep spp. Most likely anaerobes: Bacteroides, Prevotella, Peptostreptococcus, Clostridium, Actinomyces Less likely aerobes, dependent on environment and antibiotic exposure: Pseudomonas, Serratia, Morganella, Acinetobacter | Empiric: Linezolid plus Piperacillin/Tazobactam Definitive Treatment: Tailor based on culture growth and antibiotic susceptibility testing |
II | Beta hemolytic strep Methicillin-resistant Staphylococcal aureus (MRSA) Methicillin-susceptible Staphylococcal aureus (MSSA) Clostridium sp. | Penicillin G * Vancomycin, Daptomycin, Linezolid * Cefazolin or Oxacillin * Penicillin G * |
III | Vibrio, Aeromonas | Empiric: Cefepime plus doxycycline or fluoroquinolone Vibrio: Ceftriaxone plus doxycycline or quinolone alone Aeromonas: Narrow based on antimicrobial susceptibility testing |
IV | Candida species in immunocompromised patients Mucoraceous molds/Aspergillus in immunocompetent patients/trauma | Empiric: Micafungin Empiric: Amphotericin B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howell, D.; Edgin, R.; Rehman, A.; Rabinowitz, R. Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment. Bioengineering 2025, 12, 691. https://doi.org/10.3390/bioengineering12070691
Howell D, Edgin R, Rehman A, Rabinowitz R. Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment. Bioengineering. 2025; 12(7):691. https://doi.org/10.3390/bioengineering12070691
Chicago/Turabian StyleHowell, Devorah, Rachael Edgin, Aliya Rehman, and Ronald Rabinowitz. 2025. "Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment" Bioengineering 12, no. 7: 691. https://doi.org/10.3390/bioengineering12070691
APA StyleHowell, D., Edgin, R., Rehman, A., & Rabinowitz, R. (2025). Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment. Bioengineering, 12(7), 691. https://doi.org/10.3390/bioengineering12070691