Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning
Abstract
1. Introduction
- We introduce the innovative SAVE algorithm, which utilizes HSI and band selection methods to convert ordinary RGB images into NBI like with improved lesion contrast.
- We assess and contrast the efficacy of ten distinct machine learning algorithms—including CNN, YOLOv8, ResNet50, and several SVM classifiers—in the precise classification of AK, BCC, and SK.
- We illustrate that SAVE-enhanced imaging markedly enhances classification accuracy, sensitivity, and specificity compared to conventional RGB imaging, with the CNN attaining the greatest accuracy of 98%. Our methodology offers a pragmatic instrument that aids dermatologists in the early and accurate identification of skin cancer, thereby diminishing misdiagnosis and enhancing patient outcomes.
- These contributions enhance the forefront of dermatological imaging and machine learning-driven cancer categorization, presenting intriguing avenues for future clinical applications.
2. Materials and Methods
2.1. Dataset
2.2. Spectrum-Aided Vision Enhancer
2.3. ML Algorithms
2.3.1. Convolutional Neural Networks (CNNs)
Standard CNN
ResNet50
MobileNetV2
2.3.2. Random Forest
2.3.3. YOLOv8
2.3.4. Support Vector Machine
2.3.5. Logistic Regression
2.3.6. Support Vector Machine (SVM)
SVM—SGD Classifier
SVM—LOG Classifier
SVM—Polynomial Classifier
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.-Y.; Maqsood, M. Region-of-Interest based transfer learning assisted framework for skin cancer detection. IEEE Access 2020, 8, 147858–147871. [Google Scholar] [CrossRef]
- Zeng, L.; Gowda, B.J.; Ahmed, M.G.; Abourehab, M.A.; Chen, Z.-S.; Zhang, C.; Li, J.; Kesharwani, P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Keim, U.; Garbe, C.J.S.; Vitamin, D.; Cancer, S. Epidemiology of skin cancer: Update 2019. Adv. Exp. Med. Biol. 2020, 1268, 123–139. [Google Scholar] [PubMed]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; Kubik, M.J.J. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA 2021, 325, 1965–1977. [Google Scholar] [PubMed]
- Katalinic, A.; Kunze, U.; Schäfer, T. Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: Incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br. J. Dermatol. 2003, 149, 1200–1206. [Google Scholar] [CrossRef]
- Ucan, M.; Kaya, B.; Kaya, M.; Alhajj, R. Medical Report Generation from Medical Images Using Vision Transformer and Bart Deep Learning Architectures. In Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, Niagara, ON, Canada, 2–5 September 2024; pp. 257–267. [Google Scholar]
- Wen, D.; Khan, S.M.; Xu, A.J.; Ibrahim, H.; Smith, L.; Caballero, J.; Zepeda, L.; de Blas Perez, C.; Denniston, A.K.; Liu, X. Characteristics of publicly available skin cancer image datasets: A systematic review. Lancet Digit. Health 2022, 4, e64–e74. [Google Scholar] [CrossRef]
- Monika, M.K.; run Vignesh, N.; Usha Kumari, C.; Kumar, M.N.V.S.S.; Lydia, E.L. Skin cancer detection and classification using machine learning. Mater. Today Proc. 2020, 33, 4266–4270. [Google Scholar] [CrossRef]
- Javaid, A.; Sadiq, M.; Akram, F. Skin Cancer Classification Using Image Processing and Machine Learning. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 439–444. [Google Scholar]
- Murugan, A.; Nair, S.A.H.; Preethi, A.A.P.; Kumar, K.P.S. Diagnosis of skin cancer using machine learning techniques. Microprocess Microsyst. 2021, 81, 103727. [Google Scholar] [CrossRef]
- Vuran, S.; Ucan, M.; Akin, M.; Kaya, M. Multi-Classification of Skin Lesion Images Including Mpox Disease Using Transformer-Based Deep Learning Architectures. Diagnostics 2025, 15, 374. [Google Scholar] [CrossRef]
- van Schaik, J.E.; Halmos, G.B.; Witjes, M.J.; Plaat, B.E. An overview of the current clinical status of optical imaging in head and neck cancer with a focus on Narrow Band imaging and fluorescence optical imaging. Oral Oncol. 2021, 121, 105504. [Google Scholar] [CrossRef]
- Li, J.W.; Ang, T.L. Narrow-band imaging. Endoscopy in Early Gastrointestinal Cancers. Diagnosis 2021, 1, 111–119. [Google Scholar]
- Gounella, R.H.; Granado, T.C.; da Costa, J.P.C.; Carmo, J.P. Optical filters for narrow band light adaptation on imaging devices. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 7200508. [Google Scholar] [CrossRef]
- Silva, M.F.; Rodrigues, J.A.; Ghaderi, M.; Goncalves, L.M.; de Graaf, G.; Wolffenbuttel, R.F.; Correia, J.H. NBI optical filters in minimally invasive medical devices. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 165–171. [Google Scholar] [CrossRef]
- Zwakenberg, M.A.; Halmos, G.B.; Wedman, J.; van Der Laan, B.F.; Plaat, B.E. Evaluating laryngopharyngeal tumor extension using narrow band imaging versus conventional white light imaging. Laryngoscope 2021, 131, E2222–E2231. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Sholklapper, T.N.; Cocci, A.; Broggi, G.; Caltabiano, R.; Smith, A.B.; Lotan, Y.; Morgia, G.; Kamat, A.M.; Witjes, J.A.; et al. Performance of Narrow Band Imaging (NBI) and Photodynamic Diagnosis (PDD) Fluorescence Imaging Compared to White Light Cystoscopy (WLC) in Detecting Non-Muscle Invasive Bladder Cancer: A Systematic Review and Lesion-Level Diagnostic Meta-Analysis. Cancers 2021, 13, 4378. [Google Scholar] [CrossRef]
- Ozyildirim, B.M.; Kiran, M.J.N.N. Levenberg–Marquardt multi-classification using hinge loss function. Neural Netw. 2021, 143, 564–571. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 171–176. [Google Scholar]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Cheng, W.-M.; Lin, F.-C.; Wang, H.-C. Automatic counterfeit currency detection using a novel snapshot hyperspectral imaging algorithm. Sensors 2023, 23, 2026. [Google Scholar] [CrossRef]
- Chou, C.-K.; Karmakar, R.; Tsao, Y.-M.; Jie, L.W.; Mukundan, A.; Huang, C.-W.; Chen, T.-H.; Ko, C.-Y.; Wang, H.-C. Evaluation of Spectrum-Aided Visual Enhancer (SAVE) in Esophageal Cancer Detection Using YOLO Frameworks. Diagnostics 2024, 14, 1129. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Lu, C.-T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma. Diagnostics 2024, 14, 1672. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Halig, L.V.; Schuster, D.M.; Osunkoya, A.; Master, V.; Nieh, P.T.; Chen, G.Z.; Fei, B. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 2012, 17, 076005. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022, 503, 92–108. [Google Scholar] [CrossRef]
- Terven, J.; Cordova-Esparza, D.M.; Ramirez-Pedraza, A.; Chavez-Urbiola, E.A. Loss functions and metrics in deep learning. A review. arXiv 2023, arXiv:2307.02694. [Google Scholar]
- Mukti, I.Z.; Biswas, D. Transfer learning based plant diseases detection using ResNet50. In Proceedings of the 2019 4th International Conference on Electrical Information and Communication Technology (EICT), London, UK, 27–28 February 2019; pp. 1–6. [Google Scholar]
- Islam, W.; Jones, M.; Faiz, R.; Sadeghipour, N.; Qiu, Y.; Zheng, B. Improving performance of breast lesion classification using a ResNet50 model optimized with a novel attention mechanism. Tomography 2022, 8, 2411–2425. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Dong, L. G-ResNet: Improved ResNet for brain tumor classification. In Proceedings of the Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, 12–15 December 2019; Proceedings, Part I 26, 2019. pp. 535–545. [Google Scholar]
- Dong, K.; Zhou, C.; Ruan, Y.; Li, Y. MobileNetV2 model for image classification. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 476–480. [Google Scholar]
- Indraswari, R.; Rokhana, R.; Herulambang, W. Melanoma image classification based on MobileNetV2 network. Procedia Comput. Sci. 2022, 197, 198–207. [Google Scholar] [CrossRef]
- Li, W.; Liu, K. Confidence-aware object detection based on MobileNetv2 for autonomous driving. Sensors 2021, 21, 2380. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Jibril, M.L.; Algehainy, N.A.; Alamri, O.A.; Alzahrani, A.K.J.B.D.; Computing, C. Fuzzy neural network expert system with an improved Gini index random forest-based feature importance measure algorithm for early diagnosis of breast cancer in Saudi Arabia. Big Data Cogn. Comput. 2022, 6, 13. [Google Scholar] [CrossRef]
- Safaldin, M.; Zaghden, N.; Mejdoub, M.J.I.A. An Improved YOLOv8 to Detect Moving Objects. IEEE Access 2024, 12, 2169–3536. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Q.; Huang, H.; Han, Z.; Gu, Q. A modified YOLOv8 detection network for UAV aerial image recognition. Drones 2023, 7, 304. [Google Scholar] [CrossRef]
- Sharda, R.; Voß, S.; Suthaharan, S. Machine Learning Models and Algorithms for Big Data Classification; Thinking with Examples for Effective Learning; Springer: New York, NY, USA, 2019; ISBN 978-1-4899-7641-3. [Google Scholar]
- Soumaya, Z.; Taoufiq, B.D.; Benayad, N.; Yunus, K.; Abdelkrim, A. The detection of Parkinson disease using the genetic algorithm and SVM classifier. Appl. Acoust. 2021, 171, 107528. [Google Scholar] [CrossRef]
- Feng, J.; Xu, H.; Mannor, S.; Yan, S. Robust logistic regression and classification. Adv. Neural Inf. Process. Syst. 2014, 27, 253–261. [Google Scholar]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: London, UK, 2019. [Google Scholar]
- Osho, O.; Hong, S. An Overview: Stochastic Gradient Descent Classifier, Linear Discriminant Analysis, Deep Learning and Naive Bayes Classifier Approaches to Network Intrusion Detection. Int. J. Eng. Res. 2021, 10, 294–308. [Google Scholar]
- Gaye, B.; Zhang, D.; Wulamu, A. Sentiment classification for employees reviews using regression vector-stochastic gradient descent classifier (RV-SGDC). PeerJ Comput. Sci. 2021, 7, e712. [Google Scholar] [CrossRef]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–9. [Google Scholar]
- Zhou, D.-X.; Jetter, K. Approximation with polynomial kernels and SVM classifiers. Adv. Comput. Math. 2006, 25, 323–344. [Google Scholar] [CrossRef]
- Ucan, S.; Ucan, M.; Kaya, M. Deep Learning Based Approach with EfficientNet and SE Block Attention Mechanism for Multiclass Alzheimer’s Disease Detection. In Proceedings of the 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), Bahrain, 25–26 October 2023; pp. 285–289. [Google Scholar]
- Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020. [Google Scholar]
Framework | Model | Type | Metrics | |||
---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Accuracy | |||
CNN | WLI | AK | 91.29% | 96.15% | 94.56% | 94% |
BCC | 96.78% | 91.52% | 93.28% | |||
SK | 96.63% | 96.44% | 96.68% | |||
SAVE | AK | 95.75% | 100.00% | 98.02% | 98% | |
BCC | 98.52% | 98.43% | 98.85% | |||
SK | 100.00% | 97.75% | 98.69% | |||
RF | WLI | AK | 87.36% | 94.36% | 91.64% | 90% |
BCC | 87.42% | 95.28% | 91.15% | |||
SK | 98.91% | 84.49% | 90.74% | |||
SAVE | AK | 90.25% | 93.75% | 92.45% | 92% | |
BCC | 91.71% | 89.00% | 90.52% | |||
SK | 95.62% | 95.42% | 95.45% | |||
YOLOv8 | WLI | AK | 83.95% | 88.67% | 85.48% | 84% |
BCC | 89.51% | 78.78% | 83.26% | |||
SK | 78.38% | 87.73% | 82.78% | |||
SAVE | AK | 92.63% | 80.64% | 86.14% | 85% | |
BCC | 75.45% | 89.37% | 82.53% | |||
SK | 87.37% | 87.42% | 87.28% | |||
SVM | WLI | AK | 73.00% | 50.34% | 59.96% | 71% |
BCC | 67.52% | 72.96% | 70.61% | |||
SK | 73.75% | 83.42% | 78.24% | |||
SAVE | AK | 67.46% | 65.25% | 66.24% | 73% | |
BCC | 78.34% | 65.72% | 70.04% | |||
SK | 72.69% | 86.53% | 79.63% | |||
ResNet50 | WLI | AK | 60.81% | 70.77% | 65.89% | 71% |
BCC | 84.47% | 63.00% | 72.47% | |||
SK | 70.29% | 81.27% | 75.63% | |||
SAVE | AK | 76.24% | 74.54% | 75.24% | 76% | |
BCC | 85.37% | 67.49% | 75.75% | |||
SK | 68.59% | 89.37% | 77.54% | |||
MobileNetV2 | WLI | AK | 84.11% | 50.74% | 63.65% | 69% |
BCC | 75.86% | 70.91% | 73.08% | |||
SK | 60.61% | 84.72% | 70.96% | |||
SAVE | AK | 68.99% | 63.31% | 65.85% | 74% | |
BCC | 72.17% | 82.67% | 76.21% | |||
SK | 82.36% | 75.88% | 78.32% | |||
Logistic Regression | WLI | AK | 87.89% | 91.12% | 89.37% | 89% |
BCC | 88.37% | 93.38% | 90.45% | |||
SK | 95.52% | 86.14% | 90.20% | |||
SAVE | AK | 89.99% | 93.29% | 91.91% | 91% | |
BCC | 72.71% | 82.11% | 76.38% | |||
SK | 92.35% | 90.78% | 91.81% | |||
SVM- SGD Classifier | WLI | AK | 100.00% | 21.39% | 35.63% | 45% |
BCC | 83.27% | 12.72% | 21.98% | |||
SK | 39.33% | 100.00% | 56.93% | |||
SAVE | AK | 77.35% | 95.96% | 85.52% | 82% | |
BCC | 82.42% | 70.63% | 75.37% | |||
SK | 88.33% | 84.78% | 86.61% | |||
SVM- LOG Classifier | WLI | AK | 90.78% | 24.56% | 38.83% | 49% |
BCC | 41.42% | 100.00% | 58.58% | |||
SK | 100.56% | 22.75% | 36.93% | |||
SAVE | AK | 83.96% | 93.22% | 88.64% | 82% | |
BCC | 81.73% | 65.67% | 72.46% | |||
SK | 82.45% | 87.85% | 84.73% | |||
SVM- Polynomial Classifier | WLI | AK | 90.23% | 83.30% | 86.31% | 88% |
BCC | 89.75% | 89.55% | 89.88% | |||
SK | 86.00% | 95.64% | 90.27% | |||
SAVE | AK | 91.75% | 83.95% | 87.09% | 91% | |
BCC | 91.23% | 93.78% | 92.78% | |||
SK | 92.65% | 96.53% | 94.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-L.; Mukundan, A.; Karmakar, R.; Avala, P.; Chang, W.-Y.; Wang, H.-C. Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning. Bioengineering 2025, 12, 755. https://doi.org/10.3390/bioengineering12070755
Lin T-L, Mukundan A, Karmakar R, Avala P, Chang W-Y, Wang H-C. Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning. Bioengineering. 2025; 12(7):755. https://doi.org/10.3390/bioengineering12070755
Chicago/Turabian StyleLin, Teng-Li, Arvind Mukundan, Riya Karmakar, Praveen Avala, Wen-Yen Chang, and Hsiang-Chen Wang. 2025. "Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning" Bioengineering 12, no. 7: 755. https://doi.org/10.3390/bioengineering12070755
APA StyleLin, T.-L., Mukundan, A., Karmakar, R., Avala, P., Chang, W.-Y., & Wang, H.-C. (2025). Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning. Bioengineering, 12(7), 755. https://doi.org/10.3390/bioengineering12070755