Association Between Optical Coherence Tomography Angiography (OCTA)-Based Retinal Vascular Densities and Empathy in Young Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.3.1. OCTA: VD and PD
2.3.2. Cognitive, Affective, and Somatic Empathy Scales (CASES)
2.3.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Correlations and Regression Analyses
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OCTA | Optical Coherence Tomography Angiography |
VD | Vessel Density |
PD | Perfusion Density |
CASES | Cognitive, Affective, and Somatic Empathy Scales |
References
- Raine, A.; Chen, F.R. The cognitive, affective, and somatic empathy scales (CASES) for children. J. Clin. Child Adolesc. Psychol. 2018, 47, 24–37. [Google Scholar] [CrossRef]
- Bonfils, K.A.; Lysaker, P.H.; Minor, K.S.; Salyers, M.P. Empathy in schizophrenia: A meta-analysis of the Interpersonal Reactivity Index. Psychiatry Res. 2017, 249, 293–303. [Google Scholar] [CrossRef]
- Lam, B.Y.H.; Huang, Y.; Gao, Y. Gray matter asymmetry in the orbitofrontal cortex in relation to psychopathic traits in adolescents. J. Psychiatr. Res. 2021, 132, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Viviano, J.D.; Buchanan, R.W.; Calarco, N.; Gold, J.M.; Foussias, G.; Bhagwat, N.; Stefanik, L.; Hawco, C.; DeRosse, P.; Argyelan, M.; et al. Resting-state connectivity biomarkers of cognitive performance and social function in individuals with schizophrenia spectrum disorder and healthy control subjects. Biol. Psychiatry 2018, 84, 665–674. [Google Scholar] [CrossRef] [PubMed]
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44. [Google Scholar] [CrossRef]
- Heringa, S.M.; Bouvy, W.H.; van den Berg, E.; Moll, A.C.; Kappelle, L.J.; Biessels, G.J. Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: A systematic review. J. Cereb. Flow Metab. 2013, 33, 983–995. [Google Scholar] [CrossRef]
- Geneid, M.; Kettunen, J.; Nuuttila, I.; Lintonen, T.; Uusitalo, J.J.; Saarela, V.; Liinamaa, M.J. Relationship between retinal vessel diameter with both retinal nerve fibre layer thickness and optic nerve head parameters in middle-aged Caucasians: The Northern Finland Birth Cohort Eye study. Acta Ophthalmol. 2019, 97, 532–538. [Google Scholar] [CrossRef]
- Yang, H.; He, C.; Bi, Y.; Zhu, X.; Deng, D.; Ran, T.; Ji, X. Synergistic effect of VEGF and SDF-1α in endothelial progenitor cells and vascular smooth muscle cells. Front. Pharmacol. 2022, 13, 914347. [Google Scholar] [CrossRef]
- Appaji, A.; Nagendra, B.; Chako, D.M.; Padmanabha, A.; Hiremath, C.V.; Jacob, A.; Varambally, S.; Kesavan, M.; Venkatasubramanian, G.; Rao, S.V.; et al. Retinal vascular abnormalities in schizophrenia and bipolar disorder: A window to the brain. Bipolar Disord. 2019, 21, 634–641. [Google Scholar] [CrossRef]
- Kim, H.K.; Yoo, T.K. Oculomics approaches using retinal imaging to predict mental health disorders: A systematic review and meta-analysis. Int. Ophthalmol. 2025, 45, 111. [Google Scholar] [CrossRef]
- Akin, F.; Danaci, A.E.; Kayikcioglu, R.O.; Tasci, M.Y. Retinal abnormalities and their relationship with social cognition in patients with schizophrenia and their healthy siblings. Dusunen Adam. 2024, 37, 179–188. [Google Scholar] [CrossRef]
- Meier, M.H.; Shalev, I.; Moffitt, T.E.; Kapur, S.; Keefe, R.S.E.; Wong, T.Y.; Belsky, D.W.; Harrington, H.; Hogan, S.; Houts, R.; et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am. J. Psychiatry 2013, 170, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, J.J.; Mackey, D.A.; Wong, T.Y. Retinal vascular caliber: Systemic, environmental, and genetic associations. Surv. Ophthalmol. 2009, 54, 74–95. [Google Scholar] [CrossRef]
- Chu, Z.; Lin, J.; Gao, C.; Xin, C.; Zhang, Q.; Chen, C.L.; Roisman, L.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J. Biomed. Opt. 2016, 21, 066008. [Google Scholar] [CrossRef]
- Lei, J.; Durbin, M.K.; Uji, A.; Balasubramanian, S.; Baghdasaryan, E.; Al-Sheikh, M.; Sadda, S.R. Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 2017, 135, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.B.; Kang, T.S.; Won, Y.K.; Kim, J.Y. The difference in repeatability of automated superficial retinal vessel density according to the measurement area using OCT angiography. J. Ophthalmol. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Yoon, S.P.; Thompson, A.C.; Polascik, B.W.; Calixte, C.; Burke, J.R.; Petrella, J.R.; Grewal, D.S.; Fekrat, S. Correlation of OCTA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, 709–718. [Google Scholar] [CrossRef]
- De Jong, F.J.; Vernooji, M.W.; Ikram, M.K.; Ikram, M.A.; Hofman, A.; Krestin, G.P.; van der Lugt, A.; de Jong, P.T.V.M.; Breteler, M.M.B. Arteriolar oxygen saturation, cerebral blood flow, and retinal vessel diameters: The Rotterdam study. Ophthalmology 2008, 115, 887–892. [Google Scholar] [CrossRef]
- Tremblay, S.; Miloudi, K.; Chaychi, S.; Favret, S.; Binet, F.; Polosa, A.; Sapieha, P. Systemic inflammation perturbs developmental retinal angiogenesis and neuroretinal function. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8125–8139. [Google Scholar] [CrossRef]
- Al-Mazidi, S. Molecular physiology unlocks the mystery that relates cognitive impairment with the retina in schizophrenia and autism spectrum disorders: A perspective review. Front. Psychiatry 2024, 15, 1495017. [Google Scholar] [CrossRef]
- Girbardt, J.; Luck, T.; Kynast, J.; Rodriguez, F.S.; Wicklein, B.; Wirkner, K.; Rauscher, F.G. Reading cognition from the eyes: Association of retinal nerve fibre layer thickness with cognitive performance in a population-based study. Brain communications 2021, 3, fcab258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Qu, Y.; Zhang, Y.; Tang, J.; Wang, C.; Yin, H.; Sun, X. Multimodal eye imaging, retina characteristics, and psychological assessment dataset. Sci. Data 2024, 11, 836. [Google Scholar] [CrossRef]
- McAlpine, C.; Singh, N.N.; Kendall, K.A.; Ellis, C.R. Recognition of facial expressions of emotion by persons with mental retardation: A matched comparison study. Behav. Modif. 1992, 16, 543–558. [Google Scholar] [CrossRef]
- Abbott, N.J. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol. Neurobiol. 2000, 20, 131–147. [Google Scholar] [CrossRef]
- DeLegge, M.H.; Smoke, A. Neurodegeneration and inflammation. Nutr. Clin. Pract. 2008, 23, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Del Rey, R.; Lazuras, L.; Casas, J.A.; Barkoukis, V.; Ortega-Ruiz, R.; Tsorbatzoudis, H. Does empathy predict (cyber) bullying perpetration, and how do age, gender and nationality affect this relationship? Learn. Individ. Differ. 2016, 45, 275–281. [Google Scholar] [CrossRef]
Variables | Mean | SD | |
---|---|---|---|
CASES (empathy scores) | Total score (Range= 9–58) | 36.56 | 9.95 |
Cognitive score | 12.76 | 3.70 | |
Affective score | 12.84 | 3.79 | |
Somatic score | 10.82 | 3.78 | |
Retinal vascular densities | VD in the 1 mm center subfield | 20.41 | 4.94 |
VD in the 3 × 3 mm scan pattern | 146.62 | 8.12 | |
VD in the 6 × 6 mm scan pattern | 150.76 | 5.35 | |
PD in the 1 mm center subfield | 0.45 | 0.11 | |
PD in the 3 × 3 mm scan pattern | 3.46 | 0.20 | |
PD in the 6 × 6 mm scan pattern | 3.70 | 0.12 | |
Age | 21.33 | 1.40 |
Major Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | 1 | - | - | - | - | - | - | - | - | - | - |
2. VD in the 1 mm center subfield | −0.06 | 1 | - | - | - | - | - | - | - | - | - |
3. VD in the 3 × 3 mm scan pattern | −0.03 | 0.51 *** | 1 | - | - | - | - | - | - | - | - |
4. VD in the 6 × 6 mm scan pattern | 0.15 | 0.25 | 0.67 *** | 1 | - | - | - | - | - | - | - |
5. PD in the 1 mm center subfield | −0.05 | 0.995 *** | 0.54 *** | 0.27 | 1 | - | - | - | - | - | - |
6. PD in the 3 × 3 mm scan pattern | −0.10 | 0.48 *** | 0.98 *** | 0.64 *** | 0.51 *** | 1 | - | - | - | - | - |
7. PD in the 6 × 6 mm scan pattern | 0.09 | 0.15 | 0.69 *** | 0.72 *** | 0.20 | 0.71 *** | 1 | - | - | - | - |
8. CASES-Total | 0.28 * | −0.30 * | −0.15 | −0.14 | −0.30 * | −0.12 | −0.07 | 1 | - | - | - |
9. CASES-Cognitive | 0.28 * | −0.13 | −0.03 | −0.02 | −0.14 | −0.01 | 0.01 | 0.83 *** | 1 | - | - |
10. CASES-Affective | 0.20 | −0.31 * | −0.16 | −0.19 | −0.31 * | −0.14 | −0.09 | 0.91 *** | 0.61 *** | 1 | - |
11. CASES-Somatic | 0.21 | −0.33 * | −0.17 | −0.16 | −0.34 * | −0.15 | −0.09 | 0.90 *** | 0.60 *** | 0.79 *** | 1 |
Model | D.V. (Empathy) | I.V. (VD) | R2 | F (df) | p | β | t | p | Controlling for Age | R2 | F (df) | p | β | t | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | CASES-total | 1 mm center subfield | 0.088 | 4.64 (1,48) | 0.04 * | −0.30 | −2.15 | 0.04 * ^ | 0.160 | 4.46 (2,47) | 0.02 | −0.28 | −2.12 | 0.04 * | |
Age | 0.27 | 2.00 | 0.05 | ||||||||||||
2 | CASES-total | 3 × 3 mm scan | 0.021 | 1.04 (1,48) | 0.31 | −0.15 | −1.02 | 0.31 | 0.099 | 2.59 (2,47) | 0.09 | −0.14 | −1.02 | 0.311 | |
Age | 0.28 | 2.02 | 0.05 * | ||||||||||||
3 | CASES-total | 6 × 6 mm scan | 0.021 | 1.01 (1,48) | 0.32 | −0.14 | −1.01 | 0.32 | 0.115 | 3.07 (2,47) | 0.06 | −0.19 | −1.39 | 0.17 | |
Age | 0.31 | 2.24 | 0.03 * | ||||||||||||
4 | CASES-cognitive | 1 mm center subfield | 0.017 | 0.84 (1,49) | 0.36 | −0.13 | −0.92 | 0.36 | 0.093 | 2.47 (2,48) | 0.10 | −0.11 | −0.83 | 0.41 | |
Age | 0.28 | 2.01 | 0.05 | ||||||||||||
5 | CASES-cognitive | 3 × 3 mm scan | 0.001 | 0.06 (1,49) | 0.82 | −0.03 | −0.024 | 0.82 | 0.081 | 2.11 (2,48) | 0.13 | −0.03 | −0.18 | 0.86 | |
Age | 0.28 | 2.04 | 0.05 * | ||||||||||||
6 | CASES-cognitive | 6 × 6 mm scan | 0.000 | 0.02 | 0.89 | −0.02 | −0.14 | 0.89 | 0.084 | 2.20 (2,48) | 0.12 | −0.06 | −0.45 | 0.66 | |
Age | 0.29 | 2.09 | 0.04 * | ||||||||||||
7 | CASES-affective | 1 mm center subfield | 0.094 | 5.0 (1,48) | 0.03 * | −0.31 | −2.24 | 0.03 * ^ | 0.127 | 3.42 (2,47) | 0.04 * | −0.30 | −2.19 | 0.03 * | |
Age | 0.18 | 1.33 | 0.19 | ||||||||||||
8 | CASES-affective | 3 × 3 mm scan | 0.02 | 1.20 (1,48) | 0.28 | −0.16 | −1.09 | 0.28 | 0.062 | 1.54 (2,47) | 0.23 | −0.15 | −1.08 | 0.28 | |
Age | 0.19 | 1.37 | 0.18 | ||||||||||||
9 | CASES-affective | 6 × 6 mm scan | 0.03 | 1.69 (1,48) | 0.20 | −0.19 | −1.30 | 0.20 | 0.086 | 2.20 (2,47) | 0.12 | −0.22 | −1.56 | 0.125 | |
Age | 0.23 | 1.63 | 0.11 | ||||||||||||
10 | CASES-somatic | 1 mm center subfield | 0.11 | 5.82 (1,49) | 0.02 * | −0.33 | −2.41 | 0.02 * ^ | 0.144 | 4.03 (2,48) | 0.02 * | −0.32 | −2.35 | 0.02 * | |
Age | 0.19 | 1.45 | 0.15 | ||||||||||||
11 | CASES-somatic | 3 × 3 mm scan | 0.03 | 1.45 (1,49) | 0.23 | −0.17 | −1.21 | 0.23 | 0.072 | 1.86 (2,48) | 0.17 | −0.16 | −1.18 | 0.25 | |
Age | 0.21 | 1.49 | 0.14 | ||||||||||||
12 | CASES-somatic | 6 × 6 mm scan | 0.03 | 1.25 (1,49) | 0.27 | −0.16 | −1.12 | 0.27 | 0.081 | 2.12 (2,48) | 0.13 | −0.19 | −1.38 | 0.18 | |
Age | 0.24 | 1.72 | 0.09 |
Model | D.V. (Empathy) | I.V. (PD) | R2 | F (df) | p | β | t | p | Controlling for Age | R2 | F (df) | p | β | t | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | CASES-total | 1 mm center subfield | 0.092 | 4.88 (1,48) | 0.03 * | −0.30 | −2.21 | 0.03 * ^ | 0.165 | 4.65 (2,47) | 0.01 * | −0.29 | −2.20 | 0.03 * | |
Age | 0.27 | 2.03 | 0.05 * | ||||||||||||
2 | CASES-total | 3 × 3 mm scan | 0.015 | 0.74 (1,48) | 0.39 | −0.12 | −0.86 | 0.39 | 0.089 | 2.31 (2,47) | 0.11 | −0.10 | −0.73 | 0.47 | |
Age | 0.27 | 1.96 | 0.06 | ||||||||||||
3 | CASES-total | 6 × 6 mm scan | 0.005 | 0.24 (1,47) | 0.63 | −0.07 | −0.48 | 0.63 | 0.085 | 2.13 (2,46) | 0.13 | −0.10 | −0.71 | 0.49 | |
Age | 0.28 | 2.01 | 0.05 | ||||||||||||
4 | CASES-cognitive | 1 mm center subfield | 0.019 | 0.93 (1,49) | 0.34 | −0.014 | −0.96 | 0.34 | 0.095 | 2.53 (2,48) | 0.09 | −0.12 | −0.090 | 0.38 | |
Age | 0.28 | 2.02 | 0.05 * | ||||||||||||
5 | CASES-cognitive | 3 × 3 mm scan | 0.000 | 0.004 (1,49) | 0.95 | −0.01 | −0.06 | 0.95 | 0.080 | 2.10 (2,48) | 0.13 | 0.02 | 0.14 | 0.89 | |
Age | 0.29 | 2.05 | 0.05 * | ||||||||||||
6 | CASES-cognitive | 6 × 6 mm scan | 0.000 | 0.001 (1,48) | 0.97 | 0.01 | 0.04 | 0.97 | 0.073 | 1.84 (2,47) | 0.17 | −0.02 | −0.14 | 0.89 | |
Age | 0.27 | 1.92 | 0.06 | ||||||||||||
7 | CASES-affective | 1 mm center subfield | 0.093 | 4.92 (1,48) | 0.03 * | −0.31 | −2.22 | 0.03 * ^ | 0.127 | 3.42 (2,47) | 0.04 * | −0.30 | −2.19 | 0.03 * | |
Age | 0.18 | 1.35 | 0.18 | ||||||||||||
8 | CASES-affective | 3 × 3 mm scan | 0.019 | 0.93 (1,48) | 0.34 | −0.14 | −0.97 | 0.34 | 0.053 | 1.32 (2,47) | 0.28 | −0.12 | −0.87 | 0.39 | |
Age | 0.19 | 1.30 | 0.20 | ||||||||||||
9 | CASES-affective | 6 × 6 mm scan | 0.007 | 0.35 (1,47) | 0.56 | −0.09 | −0.59 | 0.56 | 0.049 | 1.17 (2,46) | 0.32 | −0.11 | −0.74 | 0.46 | |
Age | 0.20 | 1.41 | 0.17 | ||||||||||||
10 | CASES-somatic | 1 mm center subfield | 0.113 | 6.27 (1,49) | 0.02 * | −0.34 | −2.50 | 0.02 * ^ | 0.152 | 4.30 (2,48) | 0.02 * | −0.33 | −2.46 | 0.02 * | |
Age | 0.20 | 1.48 | 0.15 | ||||||||||||
11 | CASES-somatic | 3 × 3 mm scan | 0.022 | 1.10 (1,49) | 0.30 | −0.15 | −1.05 | 0.30 | 0.062 | 1.57 (2,48) | 0.22 | −0.13 | −0.92 | 0.36 | |
Age | 0.20 | 1.42 | 0.16 | ||||||||||||
12 | CASES-somatic | 6 × 6 mm scan | 0.008 | 0.40 (1,48) | 0.53 | −0.09 | −0.63 | 0.53 | 0.056 | 1.40 (2,47) | 0.26 | −0.11 | −0.78 | 0.44 | |
Age | 0.22 | 1.55 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, B.Y.-H.; Leung, C.; Lei, K.-S.; Choi, K.; Chan, H.H.L. Association Between Optical Coherence Tomography Angiography (OCTA)-Based Retinal Vascular Densities and Empathy in Young Adults. Bioengineering 2025, 12, 902. https://doi.org/10.3390/bioengineering12090902
Lam BY-H, Leung C, Lei K-S, Choi K, Chan HHL. Association Between Optical Coherence Tomography Angiography (OCTA)-Based Retinal Vascular Densities and Empathy in Young Adults. Bioengineering. 2025; 12(9):902. https://doi.org/10.3390/bioengineering12090902
Chicago/Turabian StyleLam, Bess Yin-Hung, Carole Leung, Ka-Shun Lei, Kaiyip Choi, and Henry H. L. Chan. 2025. "Association Between Optical Coherence Tomography Angiography (OCTA)-Based Retinal Vascular Densities and Empathy in Young Adults" Bioengineering 12, no. 9: 902. https://doi.org/10.3390/bioengineering12090902
APA StyleLam, B. Y.-H., Leung, C., Lei, K.-S., Choi, K., & Chan, H. H. L. (2025). Association Between Optical Coherence Tomography Angiography (OCTA)-Based Retinal Vascular Densities and Empathy in Young Adults. Bioengineering, 12(9), 902. https://doi.org/10.3390/bioengineering12090902