Medial Collateral Ligament Deficiency of the Elbow Joint: A Computational Approach
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Kinematic Comparison
3.2. Contact Area and Pressure Comparison
3.3. Ligament Load Comparison
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Alolabi, B.; Gray, A.; Ferreira, L.M.; Johnson, J.A.; Athwal, G.S.; King, G.J. Rehabilitation of the medial- and lateral collateral ligament-deficient elbow: An in vitro biomechanical study. J. Hand Ther. 2012, 25, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, K.A.; Patterson, S.D.; King, G.J. Acute elbow dislocations: Simple and complex. Orthop. Clin. N. Am. 1999, 30, 63–79. [Google Scholar] [CrossRef]
- Josefsson, P.O.; Gentz, C.F.; Johnell, O.; Wendeberg, B. Surgical versus non-surgical treatment of ligamentous injuries following dislocation of the elbow joint. A prospective randomized study. J. Bone Joint Surg. Am. 1987, 69, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.D.; Dunning, C.E.; Faber, K.J.; Duck, T.R.; Johnson, J.A.; King, G.J. Rehabilitation of the medial collateral ligament-deficient elbow: An in vitro biomechanical study. J. Hand Surg. Am. 2000, 25, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Safran, M.; Ahmad, C.S.; Elattrache, N.S. Ulnar collateral ligament of the elbow. Arthroscopy 2005, 21, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Bei, Y.; Fregly, B.J. Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 2004, 26, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.P.; Wayne, J.S. Development and validation of a computational musculoskeletal model of the elbow and forearm. Ann. Biomed. Eng. 2009, 37, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Garner, B.A.; Pandy, M.G. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomechan. Biomed. Eng. 2001, 4, 93–126. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.V.; Hutchins, E.L.; Barr, R.E.; Abraham, L.D. Development and evaluation of a musculoskeletal model of the elbow joint complex. J. Biomech. Eng. 1996, 118, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Guess, T.M.; Thiagarajan, G.; Kia, M.; Mishra, M. A subject specific multibody model of the knee with menisci. Med. Eng. Phys. 2010, 32, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Holzbaur, K.R.; Murray, W.M.; Delp, S.L. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 2005, 33, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Liacouras, P.C.; Wayne, J.S. Computational modeling to predict mechanical function of joints: Application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 2007, 129, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Cil, A.; Bogener, J.W.; Stylianou, A.P. Lateral collateral ligament deficiency of the elbow joint: A modeling approach. J. Orthop. Res. 2016, 34, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Cil, A.; Stylianou, A.P. Prediction of elbow joint contact mechanics in the multibody framework. Med. Eng. Phys. 2016, 38, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, A.P.; Guess, T.M.; Cook, J.L. Development and validation of a multi-body model of the canine stifle joint. Comput. Methods Biomechan. Biomed. Eng. 2014, 17, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Willing, R.T.; Lalone, E.A.; Shannon, H.; Johnson, J.A.; King, G.J. Validation of a finite element model of the human elbow for determining cartilage contact mechanics. J. Biomech. 2013, 46, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Willing, R.T.; Lapner, M.; Lalone, E.A.; King, G.J.; Johnson, J.A. Development of a computational technique to measure cartilage contact area. J. Biomech. 2014, 47, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Sharifi Renani, M.; Cil, A.; Stylianou, A.P. Musculoskeletal model development of the elbow joint with an experimental evaluation. Bioengineering 2018, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Morrey, B.F. The Elbow and Its Disorders; W.B. Saunders: Philadelphia, PA, USA, 2000. [Google Scholar]
- Machado, M.; Moreira, P.; Flores, P.; Lankarani, H.M. Compliant contact force models in multibody dynamics: Evolution of the hertz contact theory. Mechan. Mach. Theory 2012, 53, 99–121. [Google Scholar] [CrossRef]
- Hunt, K.H.; Crossley, F.R.E. Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mechan. 1975, 42, 440–445. [Google Scholar] [CrossRef]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Rosenwasser, M.P.; Buckwalter, J.A.; Malinin, T.I.; Mow, V.C. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 1991, 9, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gil, J.; Kanamori, A.; Woo, S.L. A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 1999, 121, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Regan, W.D.; Korinek, S.L.; Morrey, B.F.; An, K.N. Biomechanical study of ligaments around the elbow joint. Clin. Orthop. Relat. Res. 1991, 271, 170–179. [Google Scholar] [CrossRef]
- Rahman, M.; Cil, A.; Johnson, M.; Lu, Y.; Guess, T.M. Development and validation of a computational multibody model of the elbow joint. Adv. Biomech. Appl. 2014, 1, 169–185. [Google Scholar] [CrossRef]
- Morrey, B.F.; Tanaka, S.; An, K.N. Valgus stability of the elbow. A definition of primary and secondary constraints. Clin. Orthop. Relat. Res. 1991, 265, 187–195. [Google Scholar]
- Ferreira, L.M.; King, G.J.; Johnson, J.A. Motion-derived coordinate systems reduce inter-subject variability of elbow flexion kinematics. J. Orthop. Res. 2011, 29, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Morrey, B.F.; Chao, E.Y. Passive motion of the elbow joint. J. Bone Joint Surg. Am. 1976, 58, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Pichora, J.E.; Fraser, G.S.; Ferreira, L.F.; Brownhill, J.R.; Johnson, J.A.; King, G.J. The effect of medial collateral ligament repair tension on elbow joint kinematics and stability. J. Hand Surg. Am. 2007, 32, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- An, K.N.; Hui, F.C.; Morrey, B.F.; Linscheid, R.L.; Chao, E.Y. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 1981, 14, 659–669. [Google Scholar] [CrossRef]
- King, G.J.; Morrey, B.F.; An, K.N. Stabilizers of the elbow. J. Shoulder Elbow Surg. 1993, 2, 165–174. [Google Scholar] [CrossRef]
- Morrey, B.F.; An, K.N. Articular and ligamentous contributions to the stability of the elbow joint. Am. J. Sports Med. 1983, 11, 315–319. [Google Scholar] [CrossRef] [PubMed]
- De Haan, J.; Schep, N.W.; Eygendaal, D.; Kleinrensink, G.J.; Tuinebreijer, W.E.; den Hartog, D. Stability of the elbow joint: Relevant anatomy and clinical implications of in vitro biomechanical studies. Open Orthop. J. 2011, 5, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Renani, M.S.; Rahman, M.; Cil, A.; Stylianou, A.P. Ulna-humerus contact mechanics: Finite element analysis and experimental measurements using a tactile pressure sensor. Med. Eng. Phys. 2017, 50, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Renani, M.S.; Rahman, M.; Cil, A.; Stylianou, A.P. Calibrating multibody ulno-humeral joint cartilage using a validated finite element model. Multibody Syst. Dyn. 2018, 44, 81–91. [Google Scholar] [CrossRef]
- Brand, R.A. Joint contact stress: A reasonable surrogate for biological processes? Iowa Orthop. J. 2005, 25, 82–94. [Google Scholar] [PubMed]
- Eckstein, F.; Merz, B.; Muller-Gerbl, M.; Holzknecht, N.; Pleier, M.; Putz, R. Morphomechanics of the humero-ulnar joint: Ii. Concave incongruity determines the distribution of load and subchondral mineralization. Anat. Rec. 1995, 243, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.R.; Jelsma, R.D.; Joyce, M.E.; Timmerman, L.A. Open surgical procedures for injuriesto the elbow in throwers. Oper. Tech. Sports Med. 1996, 4, 109–113. [Google Scholar] [CrossRef]
- Fleisig, G.S.; Leddon, C.E.; Laughlin, W.A.; Ciccotti, M.G.; Mandelbaum, B.R.; Aune, K.T.; Escamilla, R.F.; MacLeod, T.D.; Andrews, J.R. Biomechanical performance of baseball pitchers with a history of ulnar collateral ligament reconstruction. Am. J. Sports Med. 2015, 43, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
Ligament Conditions | I-E (deg) | VR-VL (deg) | S-I (mm) | A-P (mm) | M-L (mm) | |
---|---|---|---|---|---|---|
Ulna Kinematics | MCL AB Deficient | 1.44 ± 0.36 | 1.18 ± 0.08 | 0.10 ± 0.35 | 0.73 ± 0.17 | −0.28 ± 0.23 |
(0.19) | (<0.01 *) | (0.93) | (<0.01 *) | (0.94) | ||
MCL PB Deficient | 2.24 ± 0.73 | 0.40 ± 0.08 | −0.08 ± 0.06 | 0.20 ± 0.09 | 0.15 ± 0.04 | |
(0.02) | (<0.01 *) | (0.96) | (0.49) | (0.99) | ||
Both MCL Deficient | 23.72 ± 6.50 | 2.61 ± 0.76 | −4.19 ± 1.46 | 2.61 ± 1.26 | −4.71 ± 4.62 | |
(<0.01 *) | (<0.01 *) | (<0.01 *) | (<0.01 *) | (< 0.01 *) | ||
Radius Kinematics | MCL AB Deficient | 1.91 ± 0.16 | 0.97 ± 0.07 | 0.43 ± 0.07 | −0.13 ± 0.19 | −0.47 ± 0.15 |
(<0.01 *) | (<0.01 *) | (<0.01 *) | (0.95) | (0.61) | ||
MCL PB Deficient | 1.41 ± 0.47 | 0.22 ± 0.03 | 0.20 ± 0.05 | −0.11 ± 0.11 | −0.21 ± 0.90 | |
(<0.01 *) | (<0.01 *) | (0.41) | (0.97) | (0.94) | ||
Both MCL Deficient | 11.42 ± 2.25 | 1.93 ± 0.57 | 2.24 ± 1.14 | −1.78 ± 2.13 | −4.21 ± 3.44 | |
(<0.01 *) | (<0.01 *) | (<0.01 *) | (<0.01 *) | (<0.01 *) |
Ligament Conditions | I-E (deg) | VR-VL (deg) | S-I (mm) | A-P (mm) | M-L (mm) | |
---|---|---|---|---|---|---|
Ulna Kinematics | MCL AB Deficient | 2.29 ± 0.79 | 0.99 ± 0.32 | −0.23 ± 0.17 | 0.61 ± 0.35 | −0.21 ± 0.31 |
(<0.01 *) | (<0.01 *) | (0.38) | (0.35) | (0.78) | ||
MCL PB Deficient | 1.17 ± 0.64 | 0.17 ± 0.16 | −0.10 ± 0.03 | 0.09 ± 0.14 | 0.05 ± 0.14 | |
(0.03) | (0.13) | (0.89) | (0.99) | (0.99) | ||
Both MCL Deficient | 26.89 ± 3.78 | 4.14 ± 0.62 | −6.87 ± 1.27 | 1.97 ± 3.33 | −8.31 ± 2.01 | |
(<0.01 *) | (<0.01 *) | (<0.01 *) | (<0.01 *) | (<0.01 *) | ||
Radius Kinematics | MCL AB Deficient | 2.73 ± 0.77 | 0.82 ± 0.26 | 0.41 ± 0.10 | −0.07 ± 0.14 | −0.43 ± 0.34 |
(<0.01 *) | (<0.01 *) | (<0.01 *) | (0.47) | (0.24) | ||
MCL PB Deficient | 0.84 ± 0.66 | 0.10 ± 0.12 | 0.12 ± 0.10 | −0.05 ± 0.06 | −0.07 ± 0.11 | |
(<0.01 *) | (0.06) | (0.41) | (0.73) | (0.99) | ||
Both MCL Deficient | −3.22 ± 1.17 | 0.28 ± 0.49 | −0.05 ± 42 | −0.68 ± 0.41 | −8.83 ± 2.06 | |
(<0.01 *) | (<0.01 *) | (0.70) | (<0.01 *) | (<0.01 *) |
Ligament Band | Intact | MCL AB Deficient | MCL PB Deficient | Both MCL Deficient | ||||
---|---|---|---|---|---|---|---|---|
Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | |
Lateral ulnar collateral ligament | 62 | 0.13 | 59 | 0.13 | 54 | 0.12 | 44 | 0.10 |
Radial collateral ligament | 24 | 0.11 | 20 | 0.10 | 19 | 0.10 | 23 | 0.11 |
MCL anterior band | 211 | 0.50 | - | - | 224 | 0.53 | - | - |
MCL posterior Band | 118 | 0.44 | 140 | 0.52 | - | - | - | - |
Ligament Band | Intact | MCL AB Deficient | MCL PB Deficient | Both MCL Deficient | ||||
---|---|---|---|---|---|---|---|---|
Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | Peak Load (N) | Max. Strain | |
Lateral ulnar collateral ligament | 53 | 0.11 | 45 | 0.10 | 49 | 0.11 | 31 | 0.08 |
Radial collateral ligament | 20 | 0.10 | 16 | 0.09 | 18 | 0.09 | 43 | 0.18 |
MCL anterior band | 170 | 0.40 | - | - | 181 | 0.43 | - | - |
MCL posterior band | 65 | 0.26 | 95 | 0.36 | - | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; Cil, A.; Stylianou, A.P. Medial Collateral Ligament Deficiency of the Elbow Joint: A Computational Approach. Bioengineering 2018, 5, 84. https://doi.org/10.3390/bioengineering5040084
Rahman M, Cil A, Stylianou AP. Medial Collateral Ligament Deficiency of the Elbow Joint: A Computational Approach. Bioengineering. 2018; 5(4):84. https://doi.org/10.3390/bioengineering5040084
Chicago/Turabian StyleRahman, Munsur, Akin Cil, and Antonis P. Stylianou. 2018. "Medial Collateral Ligament Deficiency of the Elbow Joint: A Computational Approach" Bioengineering 5, no. 4: 84. https://doi.org/10.3390/bioengineering5040084
APA StyleRahman, M., Cil, A., & Stylianou, A. P. (2018). Medial Collateral Ligament Deficiency of the Elbow Joint: A Computational Approach. Bioengineering, 5(4), 84. https://doi.org/10.3390/bioengineering5040084