Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation
Abstract
:1. Introduction
2. Methodology
2.1. Process Modeling
2.2. Techno-Economic Assumptions
- Plant capacity: 2000 Mg/day (tonne/day)
- Plant feedstock: FW with 78% moisture content
- Plant distance: 12 miles (19.3 km) radius [19]
- Plant life: 20 years
- The internal rate of return (IRR): 10% [20]
- Equity financed: 100%
- Plant depreciation: 7 years with 200% double declining balance (DDB)
- Contingency factor: 20% from total installed equipment and indirect cost
- Construction period: 2.5 years with total capital investment spent with 8%, 60%, and 32% for first, second, and third year, respectively.
- Startup period: 6 months, considering 50% of revenues, 75% variable cost, and 100% fixed expenses will be achieved.
2.3. Sensitivity Analysis
3. Results and Discussions
3.1. Economic Analysis
3.2. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EPA. Wasted Food Programs and Resources Across the United States. United States Environmental Protection Agency, 2018. Available online: https://www.epa.gov/sustainable-management-food/wasted-food-programs-and-resources-across-united-states (accessed on 7 November 2018).
- Russell, S.V.; Young, C.W.; Unsworth, K.L.; Robinson, C. Bringing habits and emotions into food waste behaviour. Resour. Conserv. Recycl. 2017, 125, 107–114. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Sarika, J.; David, N.; Ricardo, C.M.; Kathrin, Z. Global Food Waste Management: Full Report an Implementation Guide for Cities; World Biogas Association: London, UK, 2018. [Google Scholar]
- Levis, J.; Barlaz, M.; Themelis, N.; Ulloa, P. Assessment of the state of food waste treatment in the United States and Canada. Waste Manag. 2010, 30, 1486–1494. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Muhammad, N.I.S. Comparative Assessment of the Economic and Environmental Impacts of Food Waste Fermentation on Value-Added Products. Graduate Thesis and Dissertations, Iowa State University, Ames, IA, USA, 2019. [Google Scholar]
- Brown, R.C.; Brown, T.R. Economics of biorenewable resources. In Biorenewable Resource, 2nd ed.; Wiley Blackwell: Ames, IA, USA, 2014; p. 307. [Google Scholar]
- Nagy, E.; Boldyryev, S. Energy demand of biofuel production applying distillation and/or pervaporation. Chem. Eng. Trans. 2013, 35, 265–270. [Google Scholar]
- Singh, A.; Rangaiah, G.P. Development and optimization of a novel process of double-effect distillation with vapor recompression for bioethanol recovery and vapor permeation for bioethanol dehydration. J. Chem. Technol. Biotechnol. 2019, 94, 1041–1056. [Google Scholar] [CrossRef]
- Lewandowicz, G.; Białas, W.; Marczewski, B.; Szymanowska, D. Application of membrane distillation for ethanol recovery during fuel ethanol production. J. Membr. Sci. 2011, 375, 212–219. [Google Scholar] [CrossRef]
- Woldemariam, D.; Kullab, A.; Khan, E.U.; Martin, A. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study. Renew. Energy. 2018, 128, 484–494. [Google Scholar] [CrossRef]
- Fan, S.; Xiao, Z.; Li, M. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps. Bioresour. Technol. 2016, 211, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T. Challenges and opportunities in improving the production of bio-ethanol. Prog. Energy Combust. Sci. 2015, 47, 60–88. [Google Scholar] [CrossRef]
- Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [Google Scholar] [CrossRef]
- Banat, F.A.; Simandl, J. Membrane distillation for dilute ethanol: Separation from aqueous streams. J. Memb. Sci. 1999, 163, 333–348. [Google Scholar] [CrossRef]
- Peters, M.S.; Timmerhaus, K.D.; West, R.E.; Ronald, E. Plant Design and Economics for Chemical Engineers, 5th ed.; McGraw-Hill: Boston, MA, USA, 2003. [Google Scholar]
- Poliafico, M.; Murphy, J. Anaerobic Digestion: Decision Support Software: Decision Making Tool to Evaluate Technical, Economic and Environmental Aspects of AD Plants Development in Ireland; VDM Publishing: Saarbrücken, Germany, 2009. [Google Scholar]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; National Renewable Energy Lab: Golden, CO, USA, 1995.
- National Compost Prices. National Compost Prices 2006. Available online: http://www.recycle.cc/compostprices.pdf (accessed on 29 October 2018).
- Peiter, F.S.; Hankins, N.P.; Pires, E.C. Evaluation of concentration technologies in the design of biorefineries for the recovery of resources from vinasse. Water. Res. 2019, 157, 483–497. [Google Scholar] [CrossRef] [PubMed]
- EIA. Iowa State Energy Profile. US Energy Information Administration, 2017. Available online: https://www.eia.gov/state/print.php?sid=IA (accessed on 1 November 2018).
Parameters | Optimistic | Base Case | Pessimistic |
---|---|---|---|
Plant distance—miles radius (km radius) | 8 (12.9) | 12 (19.3) | 24 (38.6) |
Bio-compost resale value—¢/lb (¢/kg) | 20 (44.1) | 8 (17.6) | 4 (8.8) |
Plant Capacity—Mg/day | 1000 | 2000 | 3000 |
Liq. Fertilizer resale value—¢/gal (¢/L) | 40 (10.6) | 30 (7.9) | 20 (5.3) |
ethanol yield (% w/w) wet basis | 2.9 | 2.2 | 1.5 |
Fix capital cost ($MM) | 407 | 585 | 757 |
Utility Component. | Prices |
---|---|
Electricity (¢/Kwh) | 5.5 |
Water (¢/gal) (¢/liter) | 0.35 (0.09) |
Steam ($/Mg) | 12.00 |
Cooling water ($/Mg) | 0.05 |
Chilled water ($/Mg) | 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Intan Shafinas Muhammad, N.; A. Rosentrater, K. Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation. Bioengineering 2020, 7, 15. https://doi.org/10.3390/bioengineering7010015
Intan Shafinas Muhammad N, A. Rosentrater K. Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation. Bioengineering. 2020; 7(1):15. https://doi.org/10.3390/bioengineering7010015
Chicago/Turabian StyleIntan Shafinas Muhammad, Noor, and Kurt A. Rosentrater. 2020. "Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation" Bioengineering 7, no. 1: 15. https://doi.org/10.3390/bioengineering7010015
APA StyleIntan Shafinas Muhammad, N., & A. Rosentrater, K. (2020). Economic Assessment of Bioethanol Recovery Using Membrane Distillation for Food Waste Fermentation. Bioengineering, 7(1), 15. https://doi.org/10.3390/bioengineering7010015