Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Machine Learning Algorithms
2.3. Statistical Analyses
3. Results
3.1. Preprocessing
3.2. Evaluating the Performance of the Tested Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg-Damberger, M.M. The AASM Scoring Manual Four Years Later. J. Clin. Sleep Med. 2012, 8, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blechner, M.; Williamson, A.A. Consequences of Obstructive Sleep Apnea in Children. Curr. Probl. Pediatr. Adolesc. Health Care 2016, 46, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tauman, R.; Gozal, D. Obesity and obstructive sleep apnea in children. Paediatr. Respir. Rev. 2006, 7, 247–259. [Google Scholar] [CrossRef]
- Aurora, R.N.; Zak, R.S.; Karippot, A.; Lamm, C.I.; Morgenthaler, T.I.; Auerbach, S.H.; Bista, S.R.; Casey, K.R.; Chowdhuri, S.; Kristo, D.A.; et al. Practice Parameters for the Respiratory Indications for Polysomnography in Children. Sleep 2011, 34, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Sheldon, S.H.; Spruyt, K.; Ward, S.D.; et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Pulmonology, S.o.P.; Syndrome, S.o.O.S.A. Clinical Practice Guideline: Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics 2002, 109, 704–712. [Google Scholar]
- Wise, M.S.; Nichols, C.D.; Grigg-Damberger, M.M.; Marcus, C.L.; Witmans, M.B.; Kirk, V.G.; D’Andrea, L.A.; Hoban, T.F. Executive Summary of Respiratory Indications for Polysomnography in Children: An Evidence-Based Review. Sleep 2011, 34, 389–398. [Google Scholar] [CrossRef]
- Dehlink, E.; Tan, H.-L. Update on paediatric obstructive sleep apnoea. J. Thorac. Dis. 2016, 8, 224–235. [Google Scholar] [CrossRef]
- Alonso-Álvarez, M.L.; Terán-Santos, J.; Ordax Carbajo, E.; Cordero-Guevara, J.A.; Navazo-Egüia, A.I.; Kheirandish-Gozal, L.; Gozal, D. Reliability of home respiratory polygraphy for the diagnosis of sleep apnea in children. Chest 2015, 147, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Portable Monitoring Task Force of the American Academy of Sleep Medicine. Clinical Guidelines for the Use of Unattended Portable Monitors in the Diagnosis of Obstructive Sleep Apnea in Adult Patients. J. Clin. Sleep Med. 2007, 3, 737–747. [Google Scholar] [CrossRef]
- Chervin, R.D.; Hedger, K.; Dillon, J.E.; Pituch, K.J. Pediatric sleep questionnaire (PSQ): Validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 2000, 1, 21–32. [Google Scholar] [CrossRef]
- Chervin, R.D.; Weatherly, R.A.; Garetz, S.L.; Ruzicka, D.L.; Giordani, B.J.; Hodges, E.K.; Dillon, J.E.; Guire, K.E. Pediatric Sleep Questionnaire: Prediction of Sleep Apnea and Outcomes. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Khan, S.Z.; Singh, D.; Verma, S.; Talwar, A. The uses of overnight pulse oximetry. Lung India 2020, 37, 151–157. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mendonça, F.; Ravelo-García, A.G.; Morgado-Dias, F. A Systematic Review of Detecting Sleep Apnea Using Deep Learning. Sensors 2019, 19, 4934. [Google Scholar] [CrossRef] [Green Version]
- Lg, O.; Ambrogetti, A.; Sg, G. Prediction of sleep-disordered breathing by unattended overnight oximetry. J. Sleep Res. 1999, 8, 51–55. [Google Scholar] [CrossRef]
- Alvarez, D.; Hornero, R.; Marcos, J.; Del Campo, F.; Lopez, M. Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. In Proceedings of the Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; Volume 2009, pp. 400–403. [Google Scholar] [CrossRef]
- Chung, F.; Liao, P.; Elsaid, H.; Islam, S.; Shapiro, C.M.; Sun, Y. Oxygen Desaturation Index from Nocturnal Oximetry: A Sensitive and Specific Tool to Detect Sleep-Disordered Breathing in Surgical Patients. Anesth. Analg. 2012, 114, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Minn, H. Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almazaydeh, L.; Faezipour, M.; Elleithy, K. A Neural Network System for Detection of Obstructive Sleep Apnea Through SpO2 Signal Features. IJACSA 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Schlotthauer, G.; Di Persia, L.E.; Larrateguy, L.D.; Milone, D.H. Screening of obstructive sleep apnea with empirical mode decomposition of pulse oximetry. Med Eng. Phys. 2014, 36, 1074–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Tobal, G.C.; Álvarez, D.; Crespo, A.; del Campo, F.; Hornero, R. Evaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity From At-Home Oximetry Recordings. IEEE J. Biomed. Health Inform. 2019, 23, 882–892. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mendonça, F.; Morgado-Dias, F.; Ravelo-Garcia, A. SpO2 based Sleep Apnea Detection using Deep Learning. In Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES), Larnaca, Cyprus, 20–23 October 2017; pp. 91–96. [Google Scholar]
- Pathinarupothi, R.K.; DharaPrathap, J.; Rangan, E.; Gopalakrishnan, E.; Vinaykumar, R.; Somank, P. Single Sensor Techniques for Sleep Apnea Diagnosis Using Deep Learning. In Proceedings of the IEEE International Confrence on Healthcare Informatics (ICHI), Park City, UT, USA, 23–26 August 2017; pp. 524–529. [Google Scholar]
- Cen, L.; Yu, Z.L.; Kluge, T.; Ser, W. Automatic System for Obstructive Sleep Apnea Events Detection Using Convolutional Neural Network. In Proceedings of the Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 3975–3978. [Google Scholar] [CrossRef]
- Biswal, S.; Sun, H.; Goparaju, B.; Westover, M.B.; Sun, J.; Bianchi, M.T. Expert-level sleep scoring with deep neural networks. J. Am. Med. Inform. Assoc. 2018, 25, 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G. An Oximetry Based Wireless Device for Sleep Apnea Detection. Sensors 2020, 20, 888. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Tobal, G.C.; Kheirandish-Gozal, L.; Alvarez, D.; Crespo, A.; Philby, M.F.; Mohammadi, M.; Del Campo, F.; Gozal, D.; Hornero, R. Analysis and classification of oximetry recordings to predict obstructive sleep apnea severity in children. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; Volume 2015, pp. 4540–4543. [Google Scholar] [CrossRef] [Green Version]
- Vaquerizo-Villar, F.; Alvarez, D.; Gutierrez-Tobal, G.C.; Barroso-Garcia, V.; Kheirandish-Gozal, L.; Crespo, A.; Del Campo, F.; Gozal, D.; Hornero, R. Usefulness of discrete wavelet transform in the analysis of oximetry signals to assist in childhood sleep apnea-hypopnea syndrome diagnosis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Jeju Island, Korea, 11–15 July 2017; Volume 2017, pp. 3753–3756. [Google Scholar] [CrossRef]
- Hornero, R.; Kheirandish-Gozal, L.; Gutiérrez-Tobal, G.C.; Philby, M.F.; Alonso-Álvarez, M.L.; Álvarez, D.; Dayyat, E.A.; Xu, Z.; Huang, Y.-S.; Tamae Kakazu, M.; et al. Nocturnal Oximetry–based Evaluation of Habitually Snoring Children. Am. J. Respir. Crit. Care Med. 2017, 196, 1591–1598. [Google Scholar] [CrossRef]
- Crespo, A.; Álvarez, D.; Kheirandish-Gozal, L.; Gutiérrez-Tobal, G.C.; Cerezo-Hernández, A.; Gozal, D.; Hornero, R.; Del Campo, F. Assessment of oximetry-based statistical classifiers as simplified screening tools in the management of childhood obstructive sleep apnea. Sleep Breath. Schlaf Atm. 2018, 22, 1063–1073. [Google Scholar] [CrossRef]
- Vaquerizo-Villar, F.; Álvarez, D.; Kheirandish-Gozal, L.; Gutiérrez-Tobal, G.C.; Barroso-García, V.; Crespo, A.; del Campo, F.; Gozal, D.; Hornero, R. Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings. Comput. Methods Programs Biomed. 2018, 156, 141–149. [Google Scholar] [CrossRef]
- Vaquerizo-Villar, F.; Álvarez, D.; Kheirandish-Gozal, L.; Gutiérrez-Tobal, G.C.; Gómez-Pilar, J.; Crespo, A.; Del Campo, F.; Gozal, D.; Hornero, R. Automatic Assessment of Pediatric Sleep Apnea Severity Using Overnight Oximetry and Convolutional Neural Networks. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 633–636. [Google Scholar] [CrossRef]
- Jiménez-García, J.; Gutiérrez-Tobal, G.C.; García, M.; Kheirandish-Gozal, L.; Martín-Montero, A.; Álvarez, D.; Del Campo, F.; Gozal, D.; Hornero, R. Assessment of Airflow and Oximetry Signals toDetect Pediatric Sleep Apnea-HypopneaSyndrome Using AdaBoost. Entropy 2020, 22, 670. [Google Scholar] [CrossRef]
- Dean, S.N.; Shriver-Lake, L.C.; Stenger, D.A.; Erickson, J.S.; Golden, J.P.; Trammell, S.A. Machine Learning Techniques for Chemical Identification Using Cyclic Square Wave Voltammetry. Sensors 2019, 19, 2392. [Google Scholar] [CrossRef] [Green Version]
- Redline, S.; Amin, R.; Beebe, D.; Chervin, R.D.; Garetz, S.L.; Giordani, B.; Marcus, C.L.; Moore, R.H.; Rosen, C.L.; Arens, R.; et al. The Childhood Adenotonsillectomy Trial (CHAT): Rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population. Sleep 2011, 34, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.-Q.; Cui, L.; Mueller, R.; Tao, S.; Kim, M.; Rueschman, M.; Mariani, S.; Mobley, D.; Redline, S. The National Sleep Research Resource: Towards a sleep data commons. J. Am. Med. Inform. Assoc. 2018, 25, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Morante-Vélez, F.; Ordax-Carbajo, E. Procedimientos en Trastornos Respiratorios del Sueño; RESPIRA-Fundación Española del Pulmon-SEPAR: Madrid, Española, 2010. [Google Scholar]
- Verplancke, T.; Van Looy, S.; Benoit, D.; Vansteelandt, S.; Depuydt, P.; De Turck, F.; Decruyenaere, J. Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Med. Inform. Decis. Mak. 2008, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Millman, K.J.; Aivazis, M. Python for Scientists and Engineers. Comput. Sci. Eng. 2011, 13, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef] [Green Version]
- SciPy: Open Source Scientific Tools for Python—ScienceOpen. Available online: https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9 (accessed on 7 September 2020).
Reference | Cohort | Type of Classifier | Sample Size | Sensitivity | Specificity | Accuracy | Year | Home-Based |
---|---|---|---|---|---|---|---|---|
[16] | A | Multivariate adaptive regression splines | 793 | 83 | 54 | NA | 1999 | N |
[17] | A | Linear regression | 148 | 91 | 83 | 89 | 2009 | N |
[18] | A | Univariate | 475 | 96 | 67 | 87 | 2012 | Y |
[19] | A | Baggin ReTree | 25 | 78 | 84 | 83 | 2012 | N |
[20] | A | Artificial Neural Network | 93 | 88 | 100 | 93 | 2012 | N |
[21] | A | Univariate | 996 | 84 | 86 | NA | 2014 | Y |
[22] | A | Linear discriminant analysis | 302 | 97 | 50 | 93 | 2017 | Y |
[23] | A | Deep belief networks | 33 | 60 | 92 | 85 | 2017 | N |
[24] | A | Long-short term memory | 8 | 93 | NA | 96 | 2017 | N |
[25] | A | Convolutional neural networks | 23 | NA | NA | 80 | 2018 | N |
[26] | A | Recurrent and convolutional neural network | 15,804 | NA | NA | 88 | 2018 | N |
[27] | A | Common Bayesian Network | 32 | NA | NA | 85 | 2017 | N |
[28] | P | Neural network | 176 | NA | NA | 84.7–85.8 | 2015 | N |
[29] | P | Logistic regression | 298 | 79.1 | 84.1 | 81.9 | 2017 | N |
[30] | P | Neural network | 4191 | 84.0–68.7 | 53–94 | 75.2–90 | 2017 | N |
[31] | P | Logistic regression, QDA, LDA | 176 | NA | NA | 84.3–82.7 | 2018 | N |
[32] | P | Convolutional neural network | 298 | NA | NA | 81.3–85.3 | 2018 | N |
[33] | P | Convolutional neural network | 779 | 40–54 | 98.6–99.6 | 74.8–95.1 | 2020 | N |
[34] | P | AdaBoost | 974 | 91–41 | 22.7–98.1 | 78.2–85.9 | 2020 | N |
Variable | Description |
---|---|
ahi_a0h3a | Apnea/hypopnea index (AHI) ≥ 3% oxygen desaturation per hour of sleep |
odi3 | Oxygen desaturation index ≥ 3% during sleep time |
odi4 | Oxygen desaturation index ≥ 4% during sleep time |
ndes2ph | Number of desaturations with ≥ 2% desaturation |
ndes3ph | Number of desaturations with ≥ 3% desaturation |
ndes4ph | Number of desaturations with ≥ 4% desaturation |
ndes5ph | Number of desaturations with ≥ 5% desaturation |
pctle90 | Percentage of time ≤ 90% oxygen saturation |
pctle92 | Percentage of time ≤ 92% oxygen saturation |
Feature | Healthy, n = 197 (Mean ± std) | At Risk, n = 256 (Mean ± std) | Shapiro–Wilk | Mann Whitney U |
---|---|---|---|---|
p-Value | p-Value | |||
ndes2ph | 82.91 ± 58.31 | 189.94 ± 107.56 | < 1 × 10−15 | < 1 × 10−30 |
ndes3ph | 28.13 ± 20.45 | 91.67 ± 63.06 | < 1 × 10−20 | < 1 × 10−40 |
ndes4ph | 10.08 ± 8.44 | 47.17 ± 40.32 | < 1 × 10−20 | < 1 × 10−40 |
ndes5ph | 4.41 ± 4.49 | 26.51 ± 26.97 | < 1 × 10−25 | < 1 × 10−40 |
odi3 | 2.79 ± 2.08 | 10.53 ± 7.38 | < 1 × 10−20 | < 1 × 10−45 |
odi4 | 0.98 ± 0.83 | 5.53 ± 4.81 | < 1 × 10−25 | < 1 × 10−45 |
pctle90 | 0.06 ± 0.69 | 0.29 ± 0.51 | < 1 × 10−35 | < 1 × 10−25 |
pctle92 | 0.38 ± 3.49 | 0.81 ± 1.37 | < 1 × 10−35 | <1 × 10−25 |
Dataset | Algorithm | AUC (Mean ± std) | Accuracy (Mean ± std) | Sensitivity (Mean ± std) | Specificity (Mean ± std) | PPV (Mean ± std) |
---|---|---|---|---|---|---|
CHAT | SVM | 89.2 ± 7.7 | 82.9 ± 9.9 | 78.3 ± 13.5 | 87.4± 13.5 | 87.7± 12.2 |
LR | 90.2 ± 6.9 | 79.0 ± 7.2 | 62.0 ± 13.2 | 96.0 ± 5.4 | 94.3 ± 7.2 | |
AB | 89.0 ± 6.7 | 82.1 ± 6.7 | 73.2 ± 11.8 | 90.9 ± 9.3 | 90.2 ± 9.8 | |
HG | SVM | 68.3 ± 4.3 | 66.7 ± 4.9 | 80.8 ± 13.6 | 52.5 ± 6.8 | 62.8 ± 4.2 |
LR | 85.2 ± 0.0 | 75.0 ± 0.0 | 62.5 ± 0.0 | 87.5 ± 0.0 | 83.3 ± 0.0 | |
AB | 79.9 ± 1.3 | 74.6 ± 2.8 | 86.7 ± 3.1 | 62.5 ± 4.6 | 69.9 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón, J.M.; Álvarez-Pitti, J.; Cuenca, I.; Ponce, F.; Redon, P. Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome. Bioengineering 2020, 7, 131. https://doi.org/10.3390/bioengineering7040131
Calderón JM, Álvarez-Pitti J, Cuenca I, Ponce F, Redon P. Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome. Bioengineering. 2020; 7(4):131. https://doi.org/10.3390/bioengineering7040131
Chicago/Turabian StyleCalderón, José Miguel, Julio Álvarez-Pitti, Irene Cuenca, Francisco Ponce, and Pau Redon. 2020. "Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome" Bioengineering 7, no. 4: 131. https://doi.org/10.3390/bioengineering7040131
APA StyleCalderón, J. M., Álvarez-Pitti, J., Cuenca, I., Ponce, F., & Redon, P. (2020). Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome. Bioengineering, 7(4), 131. https://doi.org/10.3390/bioengineering7040131