Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications
Abstract
:1. Introduction
1.1. Background of Integrated Process Models
1.2. State of the Art for Holistic Bioprocess Models
1.3. Suggested Improvements
- Simplification and improvement of the IPM 1.0 two-matrix procedure.
- Combination of manufacturing- and development-scale data.
- Establishment of scale-dependent variable procedure.
- Improvement of model uncertainty intervals.
- Creation of an extrapolation procedure for non-controllable parameters.
- Description of a real-time DA application.
2. Materials and Methods
2.1. Software
2.2. Data
2.3. IPM Data Model
3. Results
3.1. Data Model
3.2. Extrapolation Procedure
3.2.1. Purities (Best at Max)
Above the Observed Load Range
Below the Observed Load Range
3.2.2. Impurities (Best at Min)
Above the Observed Load Range
Below the Observed Load Range
3.3. Uncertainty Intervals
3.4. Scale-Dependent Variable Simulation Procedure
- Concentration at harvest converted Product Amount to amount either by a known fixed volume or by sampling a distribution of feasible volumes.
- Product Amount becomes the first downstream UO pool value.
- Step Yields are fitted in the individual UO data, unconnected to the precursor UO, as per Equation (10).
- Step Yield is multiplied by the current Product Amount, and a new Product Amount is calculated.
- The new Product Amount remains outside the model loop and is adjusted by the subsequent UO Step Yield predictions.
- In addition to modifying Product Amount, a new attribute is produced: Global Yield, which is the current UO’s Product Amount divided by the original harvest Product Amount (Equation (11)).
- The above process repeats until drug substance and a final Global Yield is produced, defined as the ratio of the final Product Amount to the original (max) Product Amount.
3.5. Feasibility Case Study Results
4. Discussion
4.1. Data Model
4.2. Extrapolation Procedure
4.3. Scale-Dependent Variables
4.4. Digital Environment and Real-Time Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smiatek, J.; Jung, A.; Bluhmki, E. Towards a Digital Bioprocess Replica: Computational Approaches in Biopharmaceutical Development and Manufacturing. Trends Biotechnol. 2020, 38, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Zahel, T.; Hauer, S.; Mueller, E.M.; Murphy, P.; Abad, S.; Vasilieva, E.; Maurer, D.; Brocard, C.; Reinisch, D.; Sagmeister, P.; et al. Integrated Process Modeling—A Process Validation Life Cycle Companion. Bioengineering 2017, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, O.; Sampat, C.; Bhalode, P.; Ramachandran, R.; Ierapetritou, M. Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes 2020, 33, 1088. [Google Scholar] [CrossRef]
- Portela, R.M.C.; Varsakelis, C.; Richelle, A.; Giannelos, N.; Pence, J.; Dessoy, S.; von Stosch, M. When Is an In Silico Representation a Digital Twin? A Biopharmaceutical Industry Approach to the Digital Twin Concept. In Digital Twins; Herwig, C., Pörtner, R., Möller, J., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Cham, Switzerland, 2020; Volume 176, pp. 35–55. ISBN 978-3-030-71659-2. [Google Scholar]
- Piascik, R.; Vickers, J.; Lowry, D.; Scotti, S.; Stewart, J.; Calomino, A. Technology Area 12: Materials, Structures, Mechanical Systems, and Manufacturing Road Map; NASA Office of Chief Technologist: Washington, DC, USA, 2010. [Google Scholar]
- Bruynseels, K.; Santoni de Sio, F.; van den Hoven, J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geris, L.; Lambrechts, T.; Carlier, A.; Papantoniou, I. The Future Is Digital: In Silico Tissue Engineering. Curr. Opin. Biomed. Eng. 2018, 6, 92–98. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inf. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial Applications of Digital Twins. Phil. Trans. R. Soc. A 2021, 379, 20200360. [Google Scholar] [CrossRef]
- Taylor, C.; Marschall, L.; Kunzelmann, M.; Richter, M.; Rudolph, F.; Vajda, J.; Presser, B.; Zahel, T.; Studts, J.; Herwig, C. Integrated Process Model Applications Linking Bioprocess Development to Quality by Design Milestones. Bioengineering 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Borchert, D.; Zahel, T.; Thomassen, Y.E.; Herwig, C.; Suarez-Zuluaga, D.A. Quantitative CPP Evaluation from Risk Assessment Using Integrated Process Modeling. Bioengineering 2019, 6, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakemeyer, C.; McKnight, N.; John, R.S.; Meier, S.; Trexler-Schmidt, M.; Kelley, B.; Zettl, F.; Puskeiler, R.; Kleinjans, A.; Lim, F.; et al. Process Characterization and Design Space Definition. Biologicals 2016, 44, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Horvath, B.; Mun, M.; Laird, M.W. Characterization of a Monoclonal Antibody Cell Culture Production Process Using a Quality by Design Approach. Mol. Biotechnol. 2010, 45, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Agarabi, C.D.; Chavez, B.K.; Lute, S.C.; Read, E.K.; Rogstad, S.; Awotwe-Otoo, D.; Brown, M.R.; Boyne, M.T.; Brorson, K.A. Exploring the Linkage between Cell Culture Process Parameters and Downstream Processing Utilizing a Plackett-Burman Design for a Model Monoclonal Antibody. Biotechnol. Progress 2017, 33, 163–170. [Google Scholar] [CrossRef]
- Zahel, T.; Marschall, L.; Abad, S.; Vasilieva, E.; Maurer, D.; Mueller, E.M.; Murphy, P.; Natschläger, T.; Brocard, C.; Reinisch, D.; et al. Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1. Bioengineering 2017, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, S.; Pogány, T.K. On the Distribution of the Product of Correlated Normal Random Variables. Comptes Rendus Math. 2016, 354, 201–204. [Google Scholar] [CrossRef]
- Metta, N.; Ghijs, M.; Schäfer, E.; Kumar, A.; Cappuyns, P.; Assche, I.V.; Singh, R.; Ramachandran, R.; Beer, T.D.; Ierapetritou, M.; et al. Dynamic Flowsheet Model Development and Sensitivity Analysis of a Continuous Pharmaceutical Tablet Manufacturing Process Using the Wet Granulation Route. Processes 2019, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Burdick, R.K.; LeBlond, D.J.; Pfahler, L.B.; Quiroz, J.; Sidor, L.; Vukovinsky, K.; Zhang, L. Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry; Statistics for Biology and Health; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-50184-0. [Google Scholar]
- Sokolov, M.; Morbidelli, M.; Butté, A.; Souquet, J.; Broly, H. Sequential Multivariate Cell Culture Modeling at Multiple Scales Supports Systematic Shaping of a Monoclonal Antibody Toward a Quality Target. Biotechnol. J. 2018, 13, 1700461. [Google Scholar] [CrossRef]
- Montano Herrera, L.; Eilert, T.; Ho, I.-T.; Matysik, M.; Laussegger, M.; Guderlei, R.; Schrantz, B.; Jung, A.; Bluhmki, E.; Smiatek, J. Holistic Process Models: A Bayesian Predictive Ensemble Method for Single and Coupled Unit Operation Models. Processes 2022, 10, 662. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Statistics Notes: Generalisation and Extrapolation. BMJ 1998, 317, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Hahn, G.J. The Hazards of Extrapolation in Regression Analysis. J. Qual. Technol. 1977, 9, 159–165. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Young, D.S. Tolerance: An R Package for Estimating Tolerance Intervals. J. Stat. Softw. 2010, 36, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Rathore, A.S.; Kateja, N.; Kumar, D. Process Integration and Control in Continuous Bioprocessing. Curr. Opin. Chem. Eng. 2018, 22, 18–25. [Google Scholar] [CrossRef]
- Park, S.-Y.; Park, C.-H.; Choi, D.-H.; Hong, J.K.; Lee, D.-Y. Bioprocess Digital Twins of Mammalian Cell Culture for Advanced Biomanufacturing. Curr. Opin. Chem. Eng. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Narayanan, H.; Seidler, T.; Luna, M.F.; Sokolov, M.; Morbidelli, M.; Butté, A. Hybrid Models for the Simulation and Prediction of Chromatographic Processes for Protein Capture. J. Chromatogr. A 2021, 1650, 462248. [Google Scholar] [CrossRef]
- Nargund, S.; Guenther, K.; Mauch, K. The Move toward Biopharma 4.0: Insilico Biotechnology Develops “Smart” Processes That Benefit Biomanufacturing through Digital Twins. Genet. Eng. Biotechnol. News 2019, 39, 53–55. [Google Scholar] [CrossRef]
- Narayanan, H.; Luna, M.F.; Stosch, M.; Cruz Bournazou, M.N.; Polotti, G.; Morbidelli, M.; Butté, A.; Sokolov, M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol. J. 2020, 15, 1900172. [Google Scholar] [CrossRef]
UO | Step Yield |
---|---|
UO1 | Starting UO |
UO2 | PP |
UO3 | PP |
UO4 | No model found |
UO5 | PP |
UO6 | PP |
UO7 | PP |
UO8 | PP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, C.; Pretzner, B.; Zahel, T.; Herwig, C. Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications. Bioengineering 2022, 9, 534. https://doi.org/10.3390/bioengineering9100534
Taylor C, Pretzner B, Zahel T, Herwig C. Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications. Bioengineering. 2022; 9(10):534. https://doi.org/10.3390/bioengineering9100534
Chicago/Turabian StyleTaylor, Christopher, Barbara Pretzner, Thomas Zahel, and Christoph Herwig. 2022. "Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications" Bioengineering 9, no. 10: 534. https://doi.org/10.3390/bioengineering9100534
APA StyleTaylor, C., Pretzner, B., Zahel, T., & Herwig, C. (2022). Architectural and Technological Improvements to Integrated Bioprocess Models towards Real-Time Applications. Bioengineering, 9(10), 534. https://doi.org/10.3390/bioengineering9100534