Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Data Preprocessing
2.3. Data Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; Technical Documents; World Health Organization: Geneva, Switzerland, 2017.
- Patel, V.; Chisholm, D.; Parikh, R.; Charlson, F.J.; Degenhardt, L.; Dua, T.; Ferrari, A.J.; Hyman, S.; Laxminarayan, R.; Levin, C.; et al. Addressing the burden of mental, neurological, and substance use disorders: Key messages from Disease Control Priorities, 3rd edition. Lancet 2016, 387, 1672–1685. [Google Scholar] [CrossRef] [Green Version]
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- American Psychological Association. Stress in America 2020: A National Mental Health Crisis. 2020. Available online: https://www.apa.org/news/press/releases/stress/2020/report-october (accessed on 22 September 2022).
- Elgendi, M.; Menon, C. Assessing Anxiety Disorders Using Wearable Devices: Challenges and Future Directions. Brain Sci. 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendi, M.; Menon, C. Machine Learning Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress. IEEE Access 2020, 8, 34362–34374. [Google Scholar] [CrossRef]
- Adheena, M.; Sindhu, N.; Jerritta, S. Physiological Detection of Anxiety. In Proceedings of the 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; pp. 1–5. [Google Scholar]
- Bosse, T.; Gerritsen, C.; de Man, J.; Stam, M. Inducing Anxiety through Video Material. In HCI International 2014—Posters’ Extended Abstracts, Proceedings of the International Conference on Human-Computer Interaction, Heraklion, Crete, Greece, 22–27 June 2014; Stephanidis, C., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 301–306. [Google Scholar]
- Suess, W.M.; Alexander, A.B.; Smith, D.D.; Sweeney, H.W.; Marion, R.J. The Effects of Psychological Stress on Respiration: A Preliminary Study of Anxiety and Hyperventilation. Psychophysiology 1980, 17, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Homma, I.; Masaoka, Y. Breathing rhythms and emotions. Exp. Physiol. 2008, 93, 1011–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancillon, L.; Elgendi, M.; Menon, C. Machine Learning for Anxiety Detection Using Biosignals: A Review. Diagnostics 2022, 12, 1794. [Google Scholar] [CrossRef] [PubMed]
- Hasnul, M.A.; Aziz, N.A.A.; Alelyani, S.; Mohana, M.; Aziz, A.A. Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review. Sensors 2021, 21, 5015. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Strauss, M.E.; Steinhauer, S.R. Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology 2004, 41, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendi, M.; Galli, V.; Ahmadizadeh, C.; Menon, C. Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device. Data 2022, 7, 132. [Google Scholar] [CrossRef]
- Joshi, S.L.; Vatti, R.A.; Tornekar, R.V. A survey on ECG signal denoising techniques. In Proceedings of the 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India, 6–8 April 2013; pp. 60–64. [Google Scholar]
- Sankar, A.B.; Kumar, D.; Seethalakshmi, K. Performance study of various adaptive filter algorithms for noise cancellation in respiratory signals. Signal Process. Int. J. (SPIJ) 2010, 4, 267–278. [Google Scholar]
- Hejjel, L.; Kellenyi, L. The corner frequencies of the ECG amplifier for heart rate variability analysis. Physiol. Meas. 2004, 26, 39. [Google Scholar] [CrossRef] [PubMed]
- Jhuang, J.W.; Ma, H.P. A patch-sized wearable ECG/respiration recording platform with DSP capability. In Proceedings of the 2015 17th International Conference on E-Health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 298–304. [Google Scholar]
- McNames, J.; Aboy, M. Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med. Biol. Eng. Comput. 2006, 44, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Bandara, K.; Wijesiriwardana, R. Heart Rate Variability and Breathing Rate Variability Analysis during Four Limbs Exercise. In Proceedings of the 2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 27–27 November 2021; pp. 1–5. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmi, S.Z.H.; Zhang, H.; Aziz, W.; Monfredi, O.; Abbas, S.A.; Shah, S.A.; Kazmi, S.S.H.; Butt, W.H. Inverse correlation between heart rate variability and heart rate demonstrated by linear and nonlinear analysis. PLoS ONE 2016, 11, e0157557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol. Meas. 2014, 35, 1319. [Google Scholar] [CrossRef] [PubMed]
- Giardino, N.D.; Friedman, S.D.; Dager, S.R. Anxiety, respiration, and cerebral blood flow: Implications for functional brain imaging. Compr. Psychiatry 2007, 48, 103–112. [Google Scholar] [CrossRef] [PubMed]
Video Clip Details | |||
---|---|---|---|
Clip Number | AI/NAI | Description | Duration |
Clip 1 | AI | Animation, puppy, amputation | 316 |
Clip 2 | NAI | Animation, music | 159 |
Clip 3 | AI | Animation, orphan | 338 |
Clip 4 | NAI | Happy clips and images | 137 |
Clip 5 | AI | Natural disasters | 517 |
Clip 6 | NAI | Minions | 351 |
Clip 7 | AI | Car crashes | 1442 |
Clip 8 | NAI | Nature | 700 |
ECG Time Domain HRV Features | |||||||
---|---|---|---|---|---|---|---|
Feature | Mean (NAI, AI) | SD (NAI, AI) | Range | -Value ANOVA | -Value Wilcoxon | -Value | |
Non-transitional | MHR | 75.40, 73.75 | 8.93, 8.41 | 57.37–98.95 | 0.03 | 0.049 | 0.04 |
SD | 3.95, 3.55 | 1.88, 1.80 | 0.98–23.00 | 0.01 | 0.002 | 0.01 | |
RMSSD | 0.03, 0.03 | 0.02, 0.02 | 0.01–0.19 | 0.18 | 0.58 | 0.38 | |
SDNN | 0.04, 0.03 | 0.01, 0.01 | 0.01–0.13 | 0.01 | 0.05 | 0.03 | |
Transitional | MHR | 77.88, 76.62 | 9.46, 8.88 | 65.75–95.08 | 0.68 | 0.59 | 0.63 |
SD | 4.10, 4.30 | 1.70, 1.89 | 1.53–7.27 | 0.33 | 0.97 | 0.65 | |
RMSSD | 0.03, 0.04 | 0.01, 0.02 | 0.01–0.09 | 0.22 | 0.45 | 0.34 | |
SDNN | 0.06, 0.04 | 0.09, 0.01 | 0.01–0.46 | 0.41 | 0.97 | 0.69 |
ECG Frequency-Domain HRV Features | |||||||
---|---|---|---|---|---|---|---|
Feature | Mean (NAI, AI) | SD (NAI, AI) | Range | -Value ANOVA | -Value Wilcoxon | -Value | |
Non-transitional | LF | 968.90, 823.39 | 1055.0, 802.79 | 14.85–6659.1 | 0.06 | 0.29 | 0.18 |
HF | 758.70, 545.88 | 1372.1, 696.71 | 22.70–12740 | 0.01 | 0.27 | 0.14 | |
LF/HF | 2.93, 2.96 | 4.35, 4.07 | 0.06–35.92 | 0.92 | 0.79 | 0.85 | |
Transitional | LF | 790.11, 643.20 | 625.27, 546.89 | 57.35–2179.7 | 0.48 | 0.39 | 0.44 |
HF | 546.75, 734.15 | 338.76, 777.12 | 90.73–3113.7 | 0.38 | 0.85 | 0.62 | |
LF/HF | 1.83, 1.35 | 1.68, 1.15 | 0.09–6.24 | 0.36 | 0.52 | 0.44 |
RSP Time-Domain BRV Features | |||||||
---|---|---|---|---|---|---|---|
Feature | Mean (NAI, AI) | SD (NAI, AI) | Range | -Value ANOVA | -Value Wilkoxon | -Value | |
Non-transitional | MBR | 16.14, 16.90 | 2.87, 2.53 | 10.25–23.01 | 0.002 | 0.002 | 0.002 |
SD | 2.13, 1.52 | 1.28, 1.06 | 0.05–8.03 | <0.0001 | <0.0001 | <0.0001 | |
RMSSD | 0.76, 0.45 | 0.59, 0.38 | 0.01–3.24 | <0.0001 | <0.0001 | <0.0001 | |
SDNN | 0.52, 0.32 | 0.38, 0.23 | 0.02–2.03 | <0.0001 | <0.0001 | <0.0001 | |
Transitional | MBR | 16.32, 16.84 | 2.71, 2.48 | 10.88–21.43 | 0.58 | 0.65 | 0.61 |
SD | 2.71, 1.94 | 1.42, 1.22 | 0.63–5.84 | 0.11 | 0.08 | 0.1 | |
RMSSD | 0.79, 0.64 | 0.49, 0.55 | 0.13–2.02 | 0.43 | 0.13 | 0.28 | |
SDNN | 0.55, 0.43 | 0.33, 0.32 | 0.12–1.25 | 0.31 | 0.09 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritsert, F.; Elgendi, M.; Galli, V.; Menon, C. Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection. Bioengineering 2022, 9, 711. https://doi.org/10.3390/bioengineering9110711
Ritsert F, Elgendi M, Galli V, Menon C. Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection. Bioengineering. 2022; 9(11):711. https://doi.org/10.3390/bioengineering9110711
Chicago/Turabian StyleRitsert, Florian, Mohamed Elgendi, Valeria Galli, and Carlo Menon. 2022. "Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection" Bioengineering 9, no. 11: 711. https://doi.org/10.3390/bioengineering9110711
APA StyleRitsert, F., Elgendi, M., Galli, V., & Menon, C. (2022). Heart and Breathing Rate Variations as Biomarkers for Anxiety Detection. Bioengineering, 9(11), 711. https://doi.org/10.3390/bioengineering9110711