Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review
Abstract
:1. Introduction
- Seizure detection is where a model identifies the presence or lack of seizures or abnormal activities after analyzing EEG signals.
- Seizure prediction refers to the ability of a model to predict the likelihood of the occurrences of imminent epileptic seizures early on, by identifying the patient’s preictal state.
- Seizure/Phase classification is where a model is able to categorize different types of seizures or seizure phases. In other scenarios, the classification term is used for classifying different seizure phases, known in the literature as EEG/phase classification.
2. Background on Machine Learning (ML) and Deep Learning (DL)
3. Research Methodology
3.1. Research Questions
- RQ1: Is the recognition task involved in detection, prediction, or classification of epileptic seizures?
- RQ2: What are the ML/DL techniques applied to achieve any of these tasks?
- RQ3: What is the data used to achieve any of these tasks?
- RQ4: What are the challenges present during the application of ML and DL techniques to achieve these tasks?
- RQ5: How is ML/DL going to impact the clinical practice of epileptic seizure analysis?
3.2. Execution Procedure
3.3. Eligible Studies
- Inclusion criteria
- Exclusion criteria
- Data extraction fields
4. Results
4.1. Article Distribution among Journals and Publishers
4.2. Articles Distribution among Epileptic Seizure Recognition Tasks
4.3. Article Distribution among Employed Machine Learning and Deep Learning Techniques
5. Discussion
5.1. Discussion of the Challenges
5.1.1. EEG Signal Complexity and Data Transformation
5.1.2. High Number of EEG Channels and Channel Optimization
5.1.3. Generalization Ability
5.1.4. Data Imbalances
5.2. Discussion of the Solutions
5.2.1. Signal Engineering
Time Domain Features
Frequency Domain Features
Time-Frequency Domain Features
Non-Linear Features
Entropy Features
Cross-Correlation Features
5.2.2. EEG Channel Reduction and Attention
5.2.3. Adjustable Training Approaches, Data Augmentation, and Various Learning and Training Techniques
5.2.4. Data Resampling and Class Balancing
5.3. Performance Comparison
6. Public Datasets for Epileptic Seizure Tasks
6.1. CHB-MIT
6.2. TUSZ
6.3. Bonn
6.4. Bern–Barcelona
6.5. NSC-ND
6.6. SWEC-ETHZ
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADASYN | adaptive synthetic |
ANN | artificial neural network |
BPNN | back propagation neural network |
BRRM | brain-rhythmic recurrence map |
CNN | convolutional neural network |
CSP | common spatial pattern |
CWT | continuous wavelet transform |
DFA | detrended fluctuation analysis |
DFT | discrete Fourier transform |
DL | deep learning |
DTDWT | dual-tree discrete wavelet transform |
DWT | discrete wavelet transform |
EEG | electroencephalography |
EMD | empirical mode decomposition |
EWT | empirical wavelet transform |
FBSE | Fourier Bessel series expansion |
FD | fractal dimension |
FFT | fast Fourier transform |
FrFT | fractionally Fourier transformed |
FSWT | frequency slice wavelet transform |
GA | genetic algorithms |
GAN | generative adversarial network |
GAT | graph attention networks |
GTN | gated transformer network |
gcSE | group convolution squeeze-and-excitation |
GNN | graph neural network |
GST | generalized Stockwell transform |
HFD | Higuchi fractal dimension |
HT | Hilbert transform |
iEEG | intracranial EEG |
IMF | intrinsic mode function |
KL | Kullback–Leibler |
KNN | k-nearest neighbor |
LBP | local binary pattern |
LDA | linear discernment analysis |
LSTM | long short-term memory |
MAML | model-agnostic meta-learning |
MEG | Magnetoencephalogram |
MFCC | Mel-frequency cepstral coefficients |
MI | mutual information |
ML | machine learning |
MLP | multi-layer perceptron |
MRI | magnetic resonance imaging |
MV-TSK-FS | multi-view Takagi, Sugeno, and Kang fuzzy system |
NMD | non-linear mode decomposition |
NSGA | non-dominated sorting genetic algorithm |
PCA | principle component analysis |
PCC | Pearson correlation coefficient |
PFD | Petrosian fractal dimension |
PLI | phase lag index |
PLV | phase-locked value |
PSD | power spectrum density |
RF | random forest |
RLFD | Riemann–Liouville fractional derivative |
RNN | recurrent neural network |
SD | standard deviation |
sEEG | scalp EEG |
SENet | squeeze-and-excitation networks |
SLR | systematic literature review |
SMOTE | synthetic minority over-sampling technique |
ST | Stockwell transform |
STFT | short-time Fourier transform |
SVD | singular value decomposition |
SVM | support vector machine |
TL | transfer learning |
WPD | wavelet packet decomposition |
WPT | wavelet packet transform |
WST | wavelet scattering transform |
WT | wavelet transform |
References
- Epilepsy. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 25 March 2021).
- Common Epilepsy Seizure Medications: Types, Uses, Effects, and More. Available online: https://www.webmd.com/epilepsy/medications-treat-seizures (accessed on 12 September 2022).
- Munakomi, S.; Das, J.M. Epilepsy Surgery. StatPearls Publishing. 2022. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32965822 (accessed on 12 September 2022).
- Majersik, J.J.; Ahmed, A.; Chen, I.-H.A.; Shill, H.; Hanes, G.P.; Pelak, V.S.; Hopp, J.L.; Omuro, A.; Kluger, B.; Leslie-Mazwi, T. A Shortage of Neurologists We Must Act Now: A Report From the AAN 2019 Transforming Leaders Program. Neurology 2021, 96, 1122–1134. [Google Scholar] [CrossRef] [PubMed]
- Knowledge, C. Encyclopedia of Clinical Neuropsychology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Besag, F.M.C.; Vasey, M.J. Prodrome in epilepsy. Epilepsy Behav. 2018, 83, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Ives, J.R.; Mainwaring, N.R.; Gruber, L.J.; Cosgrove, G.R.; Blume, H.W.; Schomer, D.L. 128-Channel cable-telemetry EEG recording system for long-term invasive monitoring. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Petrosian, A.A.; Homan, R.; Prokhorov, D.; Wunsch II, D.C. Classification of epileptic EEG using neural network and wavelet transform. In Proceedings of the Wavelet Applications in Signal and Image Processing IV, Denver, CO, USA, 4–9 August 1996; Volume 2825, pp. 834–843. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, R.; Huang, M.; Zeng, N.; Liu, X. A review on transfer learning in EEG signal analysis. Neurocomputing 2021, 421, 1–14. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Pachori, R.B. A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Trans. Biomed. Eng. 2017, 64, 2003–2015. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 2018, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.H.; Cherian, P.J.; Caicedo, A.; Naulaers, G.; De Vos, M.; Van Huffel, S. Neonatal Seizure Detection Using Deep Convolutional Neural Networks. Int. J. Neural Syst. 2019, 29, 1850011. [Google Scholar] [CrossRef]
- Birjandtalab, J.; Baran Pouyan, M.; Cogan, D.; Nourani, M.; Harvey, J. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput. Biol. Med. 2017, 82, 49–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Yang, P.; Chen, W.; Lo, B. Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network. IEEE J. Biomed. Health Inform. 2020, 24, 465–474. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Li, M. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomed. Signal Process. Control 2018, 39, 360–377. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Li, M. Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern. Biomed. Eng. 2018, 38, 519–534. [Google Scholar] [CrossRef]
- Tian, X.; Deng, Z.; Ying, W.; Choi, K.S.; Wu, D.; Qin, B.; Wang, J.; Shen, H.; Wang, S. Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Al-Sharhan, S.; Bimba, A. Adaptive multi-parent crossover GA for feature optimization in epileptic seizure identification. Appl. Soft Comput. J. 2019, 75, 575–587. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [Google Scholar] [CrossRef]
- Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 804–813. [Google Scholar] [CrossRef]
- Sazgar, M.; Young, M.G. EEG Artifacts. In Absolute Epilepsy and EEG Rotation Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 149–162. [Google Scholar] [CrossRef]
- Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef]
- Kimura, K.; Aoki, J.; Sakamoto, Y.; Kobayashi, K.; Sakai, K.; Inoue, T.; Iguchi, Y.; Shibazaki, K. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients—A preliminary study. J. Neurol. Sci. 2012, 313, 132–136. [Google Scholar] [CrossRef]
- Alotaiby, T.; El-Samie, F.E.A.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Basile, L.F.H.; Anghinah, R.; Ribeiro, P.; Ramos, R.T.; Piedade, R.; Ballester, G.; Brunetti, E.P. Interindividual variability in EEG correlates of attention and limits of functional mapping. Int. J. Psychophysiol. 2007, 65, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Gayraud, N.T.H.; Rakotomamonjy, A.; Clerc, M.; Gayraud, N.T.H.; Rakotomamonjy, A.; Clerc, M.; Transport, O. Optimal Transport Applied to Transfer Learning For P300 Detection. In Proceedings of the 7th Graz Brain-Computer Interface Conference, Graz, Austria, 18–22 September 2017. [Google Scholar]
- Li, Y.; Liu, Y.; Guo, Y.Z.; Liao, X.F.; Hu, B.; Yu, T. Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction. IEEE Trans. Cybern. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Khatami, A.; Nazari, A.; Khosravi, A.; Lim, C.P.; Nahavandi, S. A weight perturbation-based regularisation technique for convolutional neural networks and the application in medical imaging. Expert Syst. Appl. 2020, 149, 113196. [Google Scholar] [CrossRef]
- Cao, X.; Yao, B.; Chen, B.; Sun, W.; Tan, G. Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG. Front. Neurosci. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Quon, R.J.; Meisenhelter, S.; Camp, E.J.; Testorf, M.E.; Song, Y.; Song, Q.; Culler, G.W.; Moein, P.; Jobst, B.C. AiED: Artificial intelligence for the detection of intracranial interictal epileptiform discharges. Clin. Neurophysiol. 2022, 133, 1–8. [Google Scholar] [CrossRef]
- Mormann, F.; Kreuz, T.; Rieke, C.; Andrzejak, R.G.; Kraskov, A.; David, P.; Elger, C.E.; Lehnertz, K. On the predictability of epileptic seizures. Clin. Neurophysiol. 2005, 116, 569–587. [Google Scholar] [CrossRef]
- Mohammady, N.B.E.-S. Wavelets for EEG Analysis; IntechOpen: Rijeka, Croatia, 2020; p. 5. [Google Scholar] [CrossRef]
- Ma, D.; Zheng, J.; Peng, L. Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency domain measures. Processes 2021, 9, 682. [Google Scholar] [CrossRef]
- Ein Shoka, A.A.; Alkinani, M.H.; El-Sherbeny, A.S.; El-Sayed, A.; Dessouky, M.M. Automated seizure diagnosis system based on feature extraction and channel selection using EEG signals. Brain Inform. 2021, 8, 1. [Google Scholar] [CrossRef]
- Jing, J.; Pang, X.; Pan, Z.; Fan, F.; Meng, Z. Classification and identification of epileptic EEG signals based on signal enhancement. Biomed. Signal Process. Control 2022, 71, 1746–8094. [Google Scholar] [CrossRef]
- Jia, G.; Lam, H.K.; Althoefer, K. Variable weight algorithm for convolutional neural networks and its applications to classification of seizure phases and types. Pattern Recognit. 2022, 121, 108226. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Mei, Z.; Chen, C.; Chen, W. Identification of epileptic seizures by characterizing instantaneous energy behavior of EEG. IEEE Access 2019, 7, 70059–70076. [Google Scholar] [CrossRef]
- Emara, H.M.; Elwekeil, M.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.S.M.; El-Shafai, W.; El Banby, G.M.; Alotaiby, T.; Alshebeili, S.A.; Abd El-Samie, F.E. Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction; Springer: Berlin/Heidelberg, Germany, 2022; Volume 9. [Google Scholar] [CrossRef]
- Sánchez-Hernández, S.E.; Salido-Ruiz, R.A.; Torres-Ramos, S.; Román-Godínez, I. Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals. Sensors 2022, 22, 3066. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, W.; Zhang, T. A novel seizure diagnostic model based on kernel density estimation and least squares support vector machine. Biomed. Signal Process. Control 2018, 41, 233–241. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, G.; Xiao, R.; Cui, W.; Cai, J.; Hu, X.; Sun, Y.; Qiu, J.; Qi, Y. A combination of statistical parameters for epileptic seizure detection and classification using VMD and NLTWSVM. Biocybern. Biomed. Eng. 2022, 42, 258–272. [Google Scholar] [CrossRef]
- Yang, S.; Li, B.; Zhang, Y.; Duan, M.; Liu, S.; Zhang, Y.; Feng, X.; Tan, R.; Huang, L.; Zhou, F. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput. Biol. Med. 2020, 119, 103671. [Google Scholar] [CrossRef]
- Kaushik, G.; Gaur, P.; Sharma, R.R.; Pachori, R.B. EEG signal based seizure detection focused on Hjorth parameters from tunable-Q wavelet sub-bands. Biomed. Signal Process. Control 2022, 76, 103645. [Google Scholar] [CrossRef]
- Behnam, M.; Pourghassem, H. Spectral Correlation Power-based Seizure Detection using Statistical Multi-Level Dimensionality Reduction and PSO-PNN Optimization Algorithm. IETE J. Res. 2017, 63, 736–753. [Google Scholar] [CrossRef]
- Jemal, I.; Mezghani, N.; Abou-Abbas, L.; Mitiche, A. An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data. IEEE Access 2022, 10, 60141–60150. [Google Scholar] [CrossRef]
- Li, M.; Chen, W. FFT-based deep feature learning method for EEG classification. Biomed. Signal Process. Control 2021, 66, 102492. [Google Scholar] [CrossRef]
- Nasiri, S.; Clifford, G.D. Generalizable seizure detection model using generating transferable adversarial features. IEEE Signal Process. Lett. 2021, 28, 568–572. [Google Scholar] [CrossRef]
- Liang, D.; Liu, A.; Li, C.; Liu, J.; Chen, X. A novel consistency-based training strategy for seizure prediction. J. Neurosci. Methods 2022, 372, 109557. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Liu, Y.; Zhang, Y.; Han, B.; Zhou, F. Integration of 24 feature types to accurately detect and predict seizures using scalp EEG signals. Sensors 2018, 18, 1372. [Google Scholar] [CrossRef] [Green Version]
- Abou-Abbas, L.; Jemal, I.; Henni, K.; Ouakrim, Y.; Mitiche, A.; Mezghani, N. EEG Oscillatory Power and Complexity for Epileptic Seizure Detection. Appl. Sci. 2022, 12, 4181. [Google Scholar] [CrossRef]
- Yan, X.; Yang, D.; Lin, Z.; Vucetic, B. Significant Low-dimensional Spectral-temporal Features for Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rai, J.K.; Tewari, R.P. Epileptic seizure anticipation and localisation of epileptogenic region using EEG signals. J. Med. Eng. Technol. 2018, 42, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Emara, H.M.; Elwekeil, M.; Taha, T.E.; El-Fishawy, A.S.; El-Rabaie, E.S.M.; Alotaiby, T.; Alshebeili, S.A.; Abd El-Samie, F.E. Hilbert Transform and Statistical Analysis for Channel Selection and Epileptic Seizure Prediction. Wirel. Pers. Commun. 2021, 116, 3371–3395. [Google Scholar] [CrossRef]
- Li, M.; Sun, X.; Chen, W.; Jiang, Y.; Zhang, T. Classification epileptic seizures in EEG using time-frequency image and block texture features. IEEE Access 2020, 8, 9770–9781. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, X.; Dong, F.; Wu, J.; Xu, Y.; Zheng, S. Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach. Comput. Math. Methods Med. 2022, 2022, 8724536. [Google Scholar] [CrossRef]
- Liu, T.; Truong, N.D.; Member, S.; Nikpour, A. Epileptic Seizure Classification With Symmetric and Hybrid Bilinear Models. IEEE J. Biomed. Health Inform. 2020, 24, 2844–2851. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A channel independent generalized seizure detection method for pediatric epileptic seizures. Comput. Methods Programs Biomed. 2021, 209, 106335. [Google Scholar] [CrossRef]
- Yan, J.; Li, J.; Xu, H.; Yu, Y.; Xu, T. Seizure Prediction Based on Transformer Using Scalp Electroencephalogram. Appl. Sci. 2022, 12, 4158. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y.; Yang, L. An epileptic seizure prediction model based on a time-wise attention simulation module and a pretrained ResNet. Methods 2022, 202, 117–126. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.; Li, M.; Zhang, T.; You, Y. Synchroextracting chirplet transform-based epileptic seizures detection using EEG. Biomed. Signal Process. Control 2021, 68, 102699. [Google Scholar] [CrossRef]
- Xin, Q.; Hu, S.; Liu, S.; Zhao, L.; Zhang, Y.D. An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Yedurkar, D.P.; Metkar, S.P.; Stephan, T. Multiresolution directed transfer function approach for segment-wise seizure classification of epileptic EEG signal. Cogn. Neurodyn. 2022. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, K.; Zhang, R.; Ren, H.; Chen, W. A redundancy removed, dual-tree, discretewavelet transform to construct compact representations for automated seizure detection. Appl. Sci. 2019, 9, 5215. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, B.; Feng, J.; Hu, J.; Zhang, H. Classification of EEG Signals for Epileptic Seizures Using Feature Dimension Reduction Algorithm based on LPP. Multimed. Tools Appl. 2021, 80, 30261–30282. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. FuzzyEn-based features in FrFT-WPT domain for epileptic seizure detection. Neural Comput. Appl. 2019, 31, 9335–9348. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Dong, C.; Song, S. Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network. Front. Neuroinform. 2021, 15, 605729. [Google Scholar] [CrossRef]
- Zhang, T.; Han, Z.; Chen, X.; Chen, W. Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection. Biomed. Signal Process. Control 2021, 69, 102827. [Google Scholar] [CrossRef]
- Shoeibi, A.; Ghassemi, N.; Khodatars, M.; Moridian, P.; Alizadehsani, R.; Zare, A.; Khosravi, A.; Subasi, A.; Rajendra Acharya, U.; Gorriz, J.M. Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies. Biomed. Signal Process. Control 2022, 73, 103417. [Google Scholar] [CrossRef]
- Hussein, R.; Lee, S.; Ward, R.; McKeown, M.J. Semi-dilated convolutional neural networks for epileptic seizure prediction. Neural Netw. 2021, 139, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Narin, A. Detection of Focal and Non-focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and Pre-trained Deep Neural Networks. Irbm 2020, 43, 22–31. [Google Scholar] [CrossRef]
- Khan, H.; Marcuse, L.; Fields, M.; Swann, K.; Yener, B. Focal onset seizure prediction using convolutional networks. IEEE Trans. Biomed. Eng. 2018, 65, 2109–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, V.; Sinha, G.R. Analysis of Medical Modalities for Improved Diagnosis in Modern Healthcare; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Zeng, J.; Tan, X.; Zhan, C.A. Automatic detection of epileptic seizure events using the time-frequency features and machine learning. Biomed. Signal Process. Control 2021, 69, 102916. [Google Scholar] [CrossRef]
- Anuragi, A.; Sisodia, D.S.; Pachori, R.B. Automated FBSE-EWT based learning framework for detection of epileptic seizures using time-segmented EEG signals. Comput. Biol. Med. 2021, 136, 104708. [Google Scholar] [CrossRef]
- Hu, Y.; Li, F.; Li, H.; Liu, C. An enhanced empirical wavelet transform for noisy and non-stationary signal processing. Digit. Signal Process. A Rev. J. 2017, 60, 220–229. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shah, F.A.; Tantary, A.Y. A family of convolution-based generalized Stockwell transforms. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1505–1536. [Google Scholar] [CrossRef]
- Stockwell, R.G. A basis for efficient representation of the S-transform. Digit. Signal Process. A Rev. J. 2007, 17, 371–393. [Google Scholar] [CrossRef]
- Stockwell, R.G. Localization of the complex spectrum: The s transform. IEEE Trans. Signal Process. 1996, 44, 993. [Google Scholar] [CrossRef]
- Janjarasjitt, S. Examination of the wavelet-based approach for measuring self-similarity of epileptic electroencephalogram data. J. Zhejiang Univ. Sci. C 2014, 15, 1147–1153. [Google Scholar] [CrossRef]
- Silalahi, D.K.; Rizal, A.; Rahmawati, D.; Sri Aprillia, B. Epileptic seizure detection using multidistance signal level difference fractal dimension and support vector machine. J. Theor. Appl. Inf. Technol. 2021, 99, 909–920. [Google Scholar]
- Lahmiri, S. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Phys. A Stat. Mech. Its Appl. 2018, 490, 378–385. [Google Scholar] [CrossRef]
- Ghosh, D.; Samanta, S.; Chakraborty, S. Multifractals and Chronic Diseases of the Central Nervous System; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Roca, J.L.; Rodríguez-Bermúdez, G.; Fernández-Martínez, M. Fractal-based techniques for physiological time series: An updated approach. Open Phys. 2018, 16, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Koolen, N.; Jansen, K.; Vervisch, J.; Matic, V.; De Vos, M.; Naulaers, G.; Van Huffel, S. Line length as a robust method to detect high-activity events: Automated burst detection in premature EEG recordings. Clin. Neurophysiol. 2014, 125, 1985–1994. [Google Scholar] [CrossRef]
- Battista, B.M.; Knapp, C.; McGee, T.; Goebel, V. Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics 2007, 72, H29. [Google Scholar] [CrossRef] [Green Version]
- Moctezuma, L.A.; Molinas, M. EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization. Front. Neurosci. 2020, 14, 593. [Google Scholar] [CrossRef]
- Jana, G.C.; Agrawal, A.; Pattnaik, P.K.; Sain, M. DWT-EMD Feature Level Fusion Based Approach over Multi and Single Channel EEG Signals for Seizure Detection. Diagnostics 2022, 12, 324. [Google Scholar] [CrossRef]
- Muhammad Usman, S.; Khalid, S.; Bashir, S.; Usman, S.M.; Khalid, S.; Bashir, S.; Muhammad Usman, S.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 2021, 136, 104710. [Google Scholar] [CrossRef]
- Hassan, K.M.; Islam, M.R.; Nguyen, T.T.; Molla, M.K.I. Epileptic seizure detection in EEG using mutual information-based best individual feature selection. Expert Syst. Appl. 2022, 193, 116414. [Google Scholar] [CrossRef]
- Darjani, N.; Omranpour, H. Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method. Knowl.-Based Syst. 2020, 205, 106276. [Google Scholar] [CrossRef]
- Li, M.; Sun, X.; Chen, W. Patient-specific seizure detection method using nonlinear mode decomposition for long-term EEG signals. Med. Biol. Eng. Comput. 2020, 58, 3075–3088. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.; You, Y. Scattering transform-based features for the automatic seizure detection. Biocybern. Biomed. Eng. 2020, 40, 77–89. [Google Scholar] [CrossRef]
- Yang, C.; Luan, G.; Liu, Z.; Wang, Q. Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings. Phys. A Stat. Mech. Its Appl. 2019, 523, 507–515. [Google Scholar] [CrossRef]
- Ravi, S.; Shreenidhi, S.; Shahina, A.; Ilakiyaselvan, N.; Khan, A.N. Epileptic seizure detection using convolutional neural networks and recurrence plots of EEG signals. Multimed. Tools Appl. 2022, 81, 6585–6598. [Google Scholar] [CrossRef]
- Song, Z.; Deng, B.; Wang, J.; Yi, G.; Yue, W. Epileptic Seizure Detection Using Brain-Rhythmic Recurrence Biomarkers and ONASNet-Based Transfer Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 979–989. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. EEG-based automatic multi-class classification of epileptic seizure types using recurrence plots. Expert Syst. 2022, 39, e12923. [Google Scholar] [CrossRef]
- Shariat, A.; Zarei, A.; Karvigh, S.A.; Asl, B.M. Automatic detection of epileptic seizures using Riemannian geometry from scalp EEG recordings. Med. Biol. Eng. Comput. 2021, 59, 1431–1445. [Google Scholar] [CrossRef] [PubMed]
- Tajmirriahi, M.; Amini, Z. Modeling of seizure and seizure-free EEG signals based on stochastic differential equations. Chaos Solitons Fractals 2021, 150, 111104. [Google Scholar] [CrossRef]
- Dissanayake, T.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Deep Learning for Patient-Independent Epileptic Seizure Prediction Using Scalp EEG Signals. IEEE Sens. J. 2021, 21, 9377–9388. [Google Scholar] [CrossRef]
- Yavuz, E.; Kasapbaşı, M.C.; Eyüpoğlu, C.; Yazıcı, R. An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybern. Biomed. Eng. 2018, 38, 201–216. [Google Scholar] [CrossRef]
- Quian Quiroga, R.; Rosso, O.A.; Başar, E.; Schürmann, M. Wavelet entropy in event-related potentials: A new method shows ordering of EEG oscillations. Biol. Cybern. 2001, 84, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Huang, S. Kernel entropy component analysis with nongreedy L1-norm maximization. Comput. Intell. Neurosci. 2018, 2018, 6791683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.R.; Faul, S.; Marnane, W.P.; Lightbody, G.; Korotchikova, I.; Boylan, G.B. A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 2008, 119, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Karmakar, C.; Yearwood, J.; Venkatesh, S.; Palaniswami, M.; Liu, C. Detection of Epileptic Seizure Based on Entropy Analysis of Short-Term EEG 2018. PLoS ONE 2018, 13, e0193691. [Google Scholar]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Bhat, S.; Koh, J.E.W. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl.-Based Syst. 2015, 88, 85–96. [Google Scholar] [CrossRef]
- Aydore, S.; Pantazis, D.; Leahy, R.M. A note on the phase locking value and its properties. Neuroimage 2013, 74, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; El-Fiqi, H.; Hu, J.; Abbass, H.A. Convolutional Neural Networks Using Dynamic Functional Connectivity for EEG-Based Person Identification in Diverse Human States. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3359–3372. [Google Scholar] [CrossRef]
- Detti, P.; De Lara, G.Z.M.; Bruni, R.; Pranzo, M.; Sarnari, F.; Vatti, G. A Patient-Specific Approach for Short-Term Epileptic Seizures Prediction Through the Analysis of EEG Synchronization. IEEE Trans. Biomed. Eng. 2019, 66, 1494–1504. [Google Scholar] [CrossRef]
- Parvez, M.Z.; Paul, M. Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, W.; Li, M. Symplectic geometry decomposition-based features for automatic epileptic seizure detection. Comput. Biol. Med. 2020, 116, 103549. [Google Scholar] [CrossRef] [PubMed]
- Priya Prathaban, B.; Balasubramanian, R. Dynamic learning framework for epileptic seizure prediction using sparsity based EEG Reconstruction with Optimized CNN classifier. Expert Syst. Appl. 2021, 170, 114533. [Google Scholar] [CrossRef]
- Epmoghaddam, D.; Sheth, S.A.; Haneef, Z.; Gavvala, J.; Aazhang, B. Epileptic seizure prediction using spectral width of the covariance matrix. J. Neural Eng. 2022, 19, 026029. [Google Scholar] [CrossRef]
- Priyasad, D.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Interpretable Seizure Classification Using Unprocessed EEG with Multi-Channel Attentive Feature Fusion. IEEE Sens. J. 2021, 21, 19186–19197. [Google Scholar] [CrossRef]
- Ma, M.; Cheng, Y.; Wang, Y.; Li, X.; Mao, Q.; Zhang, Z.; Chen, Z.; Zhou, Y. Early Prediction of Epileptic Seizure Based on the BNLSTM-CASA Model. IEEE Access 2021, 9, 79600–79610. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, L.; Dong, M.; Liu, Z.; Zhang, Y.; Li, Y. Adversarial Representation Learning for Robust Patient-Independent Epileptic Seizure Detection. IEEE J. Biomed. Health Inform. 2020, 24, 2852–2859. [Google Scholar] [CrossRef] [Green Version]
- Jana, R.; Mukherjee, I. Deep learning based efficient epileptic seizure prediction with EEG channel optimization. Biomed. Signal Process. Control 2021, 68, 102767. [Google Scholar] [CrossRef]
- Wang, Z.; Mengoni, P. Seizure classification with selected frequency bands and EEG montages: A Natural Language Processing approach. Brain Inform. 2022, 9, 11. [Google Scholar] [CrossRef]
- Behnam, M.; Pourghassem, H. Seizure-specific wavelet (Seizlet) design for epileptic seizure detection using CorrEntropy ellipse features based on seizure modulus maximas patterns. J. Neurosci. Methods 2017, 276, 84–107. [Google Scholar] [CrossRef]
- Duan, L.; Wang, Z.; Qiao, Y.; Wang, Y.; Huang, Z.; Zhang, B. An Automatic Method for Epileptic Seizure Detection Based on Deep Metric Learning. IEEE J. Biomed. Health Inform. 2022, 26, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Shafiqul, I.M.; Thapa, K.; Yang, S.H. Epileptic-Net: An Improved Epileptic Seizure Detection System Using Dense Convolutional Block with Attention Network from EEG. Sensors 2022, 22, 728. [Google Scholar] [CrossRef]
- Tang, L.; Xie, N.; Zhao, M.; Wu, X. Seizure prediction using multi-view features and improved convolutional gated recurrent network. IEEE Access 2020, 8, 172352–172361. [Google Scholar] [CrossRef]
- Dissanayake, T.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Geometric Deep Learning for Subject Independent Epileptic Seizure Prediction Using Scalp EEG Signals. IEEE J. Biomed. Health Inform. 2022, 26, 527–538. [Google Scholar] [CrossRef]
- Thuwajit, P.; Rangpong, P.; Sawangjai, P.; Autthasan, P.; Chaisaen, R.; Banluesombatkul, N.; Boonchit, P.; Tatsaringkansakul, N.; Sudhawiyangkul, T.; Wilaiprasitporn, T. EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection. IEEE Trans. Ind. Inform. 2022, 18, 5547–5557. [Google Scholar] [CrossRef]
- Kukačka, J.; Golkov, V.; Cremers, D. Regularization for Deep Learning: A Taxonomy. arXiv 2007, arXiv:1710.10686. Available online: http://arxiv.org/abs/1710.10686 (accessed on 11 July 2022).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: Cambridge, MA, USA, 2016. [Google Scholar]
- Cooijmans, T.; Ballas, N.; Laurent, C.; Gülçehre, Ç.; Courville, A. Recurrent batch normalization. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017; pp. 1–11. [Google Scholar]
- Xu, Y.; Yang, J.; Sawan, M. Multichannel Synthetic Preictal EEG Signals to Enhance the Prediction of Epileptic Seizures. IEEE Trans. Biomed. Eng. 2022, 9294, 3516–3525. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef]
- He, J.; Cui, J.; Zhao, Y.; Zhang, G.; Xue, M.; Chu, D. Spatial-Temporal Seizure Detection with Graph Attention Network and Bi-Directional LSTM Architecture. Biomed. Signal Process. Control 2022, 78, 103908. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Gao, B.; Zhou, J.; Yang, Y.; Chi, J.; Yuan, Q. Generative adversarial network and convolutional neural network-based EEG imbalanced classification model for seizure detection. Biocybern. Biomed. Eng. 2022, 42, 1–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, C.; Zhang, G.; Wang, Y.; Chen, X.; Jia, W.; Yuan, Q.; Xu, F.; Zheng, Y. EEG-Based Seizure detection using linear graph convolution network with focal loss. Comput. Methods Programs Biomed. 2021, 208, 106277. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F. Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain–Computer Interfaces. Proc. IEEE 2015, 103, 871–890. [Google Scholar] [CrossRef]
- Wang, W.; Sun, D. The improved AdaBoost algorithms for imbalanced data classification. Inf. Sci. 2021, 563, 358–374. [Google Scholar] [CrossRef]
- Al-Hadeethi, H.; Abdulla, S.; Diykh, M.; Deo, R.C.; Green, J.H. Adaptive boost LS-SVM classification approach for time-series signal classification in epileptic seizure diagnosis applications. Expert Syst. Appl. 2020, 161, 113676. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [Green Version]
- Obeid, I.; Picone, J. The temple university hospital EEG data corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E—Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2001, 64, 061907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrzejak, R.G.; Schindler, K.; Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 2012, 86, 46206. [Google Scholar] [CrossRef] [Green Version]
- Swami, P.; Gandhi, T.K.; Panigrahi, B.K.; Tripathi, M.; Anand, S. A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 2016, 56, 116–130. [Google Scholar] [CrossRef]
- Burrello, A.; Cavigelli, L.; Schindler, K.; Benini, L.; Rahimi, A. Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition Date, Florence, Italy, 25–29 March 2019; pp. 752–757. [Google Scholar] [CrossRef] [Green Version]
- Khan, P.; Kader, M.F.; Islam, S.M.R.; Rahman, A.B.; Kamal, M.S.; Toha, M.U.; Kwak, K.S. Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access 2021, 9, 37622–37655. [Google Scholar] [CrossRef]
- Vinny, P.W.; Garg, R.; Padma Srivastava, M.V.; Lal, V.; Vishnu, V.Y. Critical appraisal of a machine learning paper: A guide for the neurologist. Ann. Indian Acad. Neurol. 2021, 24, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; D’Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef] [PubMed]
Reference | Title | Publication Year | Citations |
---|---|---|---|
[11] | A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform | 2017 | 222 |
[12] | Epileptic seizure detection based on EEG signals and CNN | 2018 | 167 |
[13] | Neonatal Seizure Detection Using Deep Convolutional Neural Networks | 2019 | 100 |
[14] | Automated seizure detection using limited-channel EEG and non-linear dimension reduction | 2017 | 77 |
[15] | Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network | 2020 | 68 |
[16] | Fuzzy distribution entropy and its application in automated seizure detection technique | 2018 | 64 |
[17] | Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network | 2020 | 45 |
[18] | Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest | 2018 | 40 |
[19] | Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection | 2019 | 36 |
[20] | Adaptive Multi-Parent Crossover GA for Feature Optimization in Epileptic Seizure Identification | 2019 | 17 |
Group | Title | Task | Classifier | Year | Citations |
---|---|---|---|---|---|
Machine Learning | A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform [11] | Detection | RF, C4.5, FT, BayesNet NB, KNN | 2017 | 222 |
Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble [21] | Classification | BPNN Ensemble | 2017 | 123 | |
Automated seizure detection using limited-channel EEG and non-linear dimension reduction [14] | Detection | KNN | 2017 | 77 | |
Fuzzy distribution entropy and its application in automated seizure detection technique [16] | Detection | KNN | 2018 | 65 | |
Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest [18] | Detection | RF | 2018 | 40 | |
Deep Learning | Epileptic seizure detection based on EEG signals and CNN [12] | Detection | CNN | 2018 | 167 |
Efficient Epileptic Seizure Prediction Based on Deep Learning [22] | Prediction | Deep CNN + BiLSTM | 2019 | 130 | |
Neonatal Seizure Detection Using Deep Convolutional Neural Networks [13] | Detection | DCNN | 2019 | 100 | |
Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network [15] | Prediction | CNN | 2020 | 68 | |
Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network [17] | Detection | CNN + MLP | 2020 | 45 |
Challenge | Solution |
---|---|
EEG Signal Complexity and Data Transformation | Signal engineering |
High Number of EEG Channels/Channel Optimization | EEG channel reduction and attention |
Generalization Ability | Adjustable training approaches, data augmentation, and various learning and training techniques |
Data Imbalances | Data resampling and class balancing |
Reference | Signal Engineering | Channel Selection/Attention | Generalization Techniques | Data Balancing | Classifier | Dataset | Best Performance (%) (acc, sen, spe, pre, auc, f1) 1 |
---|---|---|---|---|---|---|---|
[37] | DWT, Statistical | 🗴 | 🗴 | 🗴 | SVM | Bonn 2 | 97.78, 96.73, 96.79, na, na, na |
[41] | Statistical | 🗴 | 🗴 | ✓ | DT, SVM, ANN, RF, KNN | CHB-MIT | 98, 84, na, na, na, 90 |
Siena-EEG | 96, 84, na, na, na, 86 | ||||||
[45] | TQWT, Hjorth parameters | 🗴 | 🗴 | 🗴 | SVM | Bonn 3 | 100, 100, 100, na, na, na |
[60] | STFT | 🗴 | 🗴 | ✓ | GTN | CHB-MIT | na, 96.01, 96.23, 95.86, na, na |
[63] | DWT | ✓ | 🗴 | 🗴 | CNN | Bonn 3 | 100, 100, 100, na, na, na |
Bern | 99.7, 99.65, 99.79, na, na, na | ||||||
[70] | TQWT, Fuzzy Entropy | 🗴 | 🗴 | 🗴 | ANFIS | Bonn 3 | 99.83, 99.67, 99.85, 99.85, na, 99.82 |
Freiburg | 99.28, 99.54, 99.56, 99.29, na, 99.49 | ||||||
[115] | Covariance, Coherence | 🗴 | ✓ | ✓ | SVM | CHB-MIT | 99.05, 93.56, 99.09, na, 99, na |
[125] | MFCC | 🗴 | 🗴 | ✓ | GNN | CHB-MIT | 95.38, 94.47, 94.16, na, 98.8, na |
Siena-EEG | 96.05, 96.05, 96.61, na, 99.1, na | ||||||
[126] | Deep features | 🗴 | ✓ | ✓ | CNN | CHB-MIT | 96.17, 56.83, 96.97, na, na, 96.94 |
TUSZ | 67.68, 59.21, 75.3, na, na, 69.07 | ||||||
Bonn 3 | 99.89, 99.8, 99.97, na, na, na | ||||||
[132] | Deep features | 🗴 | 🗴 | 🗴 | GAT + BiLSTM | CHB-MIT | 98.52, 97.75, 94.34, na, 96.81, 95.9 |
TUSZ | 98.02, 97.7, 99.06, na, 97.8, 97.86 |
CHB-MIT | TUSZ | Bonn | Bern-Barcelona | NSC-ND | SWEC-ETHZ | |
---|---|---|---|---|---|---|
Total number of seizure classes | 1 | 8 | 1 | 1 | 1 | 1 |
Number of patients | 23 | 675 | 23 | 5 | 10 | 18 |
Number of available channels | 23–26 | 24–36 | 1 | 1 | 1 | 24–128 |
EEG type | sEEG | sEEG | sEEG/iEEG | iEEG | sEEG | iEEG |
Sampling frequency | 256 Hz | 250 Hz | 173.61 Hz | 512 Hz | 200 Hz | 512 Hz |
Total recording time | 977 h | 1476 h | 3.2 h | 41.6 h | 0.2 h | 2656 h |
Total number of seizures | 198 | 4029 | 100 | 3750 | 50 | 116 |
Detailed metadata | No | Yes | No | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nafea, M.S.; Ismail, Z.H. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review. Bioengineering 2022, 9, 781. https://doi.org/10.3390/bioengineering9120781
Nafea MS, Ismail ZH. Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review. Bioengineering. 2022; 9(12):781. https://doi.org/10.3390/bioengineering9120781
Chicago/Turabian StyleNafea, Mohamed Sami, and Zool Hilmi Ismail. 2022. "Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review" Bioengineering 9, no. 12: 781. https://doi.org/10.3390/bioengineering9120781
APA StyleNafea, M. S., & Ismail, Z. H. (2022). Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review. Bioengineering, 9(12), 781. https://doi.org/10.3390/bioengineering9120781