Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen Complete Protein Sequences Retrieval
2.2. Duplicate Proteins Identification
2.3. Non-Paralogs Proteins Identification
2.4. Essential Proteins Identification
2.5. Analysis of Standard and Unique Pathways
2.6. Proteins Localization Prediction
2.7. Virulent Proteins Identification
2.8. Drug Ability Potential of Short-Listed Proteins
2.9. Gut Metagenome Screening
2.10. 3D Structure Prediction
2.11. Model Validation
2.12. Molecular Docking
2.13. MD Simulation Study
2.14. Post MD Analysis
3. Results and Discussion
3.1. Retrieval of Pathogen Proteome and Removal of Duplicates
3.2. Pathogen Essential and Non-Homologous Genes Identification
3.3. Pathways Analysis
3.4. Prediction of Protein Subcellular Localization
3.5. Druggability of Selected Proteins
3.6. Screening of Short-Listed Proteins with Gut Flora
3.7. Homology Modeling and Model Validation
3.8. Molecular Docking Study
3.9. MD Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freney, J.; Brun, Y.; Bes, M.; Meugnier, H.; Grimont, F.; Grimont, P.A.D.; Nervi, C.; Fleurette, J. Staphylococcus lugdunensis sp. nov. and Staphylococcus schleiferi sp. nov., Two Species from Human Clinical Specimens. Int. J. Syst. Evol. Microbiol. 1988, 38, 168–172. [Google Scholar] [CrossRef]
- Jones, R.M.; Jackson, M.A.; Ong, C.; Lofland, G.K. Endocarditis is caused by Staphylococcus lugdunensis. Pediatr. Infect. Dis. J. 2002, 21, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Kaabia, N.; Scauarda, D.; Lena, G.; Drancourt, M. Molecular identification of Staphylococcus lugdunensis in a patient with meningitis. J. Clin. Microbiol. 2002, 40, 1824–1825. [Google Scholar] [CrossRef]
- Ainoda, Y.; Takeshita, N.; Hase, R.; Mikawa, T.; Hosokawa, N.; Kawamura, I.; Ohmagari, N.; Kurai, H.; Abe, M.; Kimura, M.; et al. Multicenter study of the clinical presentation of Staphylococcus lugdunensis bacteremia in Japan. Jpn. J. Infect. Dis. 2016, 70, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Zinkernagel, A.S.; Zinkernagel, M.S.; Elzi, M.V.; Genoni, M.; Gubler, J.; Zbinden, R.; Mueller, N.J. Significance of Staphylococcus lugdunensis bacteremia: Report of 28 cases and review of the literature. Infection 2008, 36, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Argemi, X.; Martin, V.; Loux, V.; Dahyot, S.; Lebeurre, J.; Guffroy, A.; Martin, M.; Velay, A.; Keller, D.; Prévost, G.; et al. Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biol. Evol. 2017, 9, 1183–1189. [Google Scholar] [CrossRef]
- Fujita, S.-I.; Senda, Y.; Iwagami, T.; Hashimoto, T. Rapid Identification of Staphylococcal Strains from Positive-Testing Blood Culture Bottles by Internal Transcribed Spacer PCR Followed by Microchip Gel Electrophoresis. J. Clin. Microbiol. 2005, 43, 1149–1157. [Google Scholar] [CrossRef]
- Frank, K.L.; Del Pozo, J.L.; Patel, R. From clinical microbiology to infection pathogenesis: How daring to be different works for Staphylococcus lugdunensis. Clin. Microbiol. Rev. 2008, 21, 111–133. [Google Scholar] [CrossRef]
- Tse, H.; Tsoi, H.W.; Leung, S.P.; Lau SK, P.; Woo PC, Y.; Yuen, K.Y. Complete genome sequence of Staphylococcus lugdunensis strain HKU09-01. J. Bacteriol. 2010, 192, 1471–1472. [Google Scholar] [CrossRef]
- Frank, K.L.; Patel, R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect. Immun. 2007, 75, 4728–4742. [Google Scholar] [CrossRef] [Green Version]
- Tee, W.S.; Soh, S.Y.; Lin, R.; Loo, L.H. Staphylococcus lugdunensis carrying the mecA gene causes catheter-associated bloodstream infection in a premature neonate. J. Clin. Microbiol. 2003, 41, 519–520. [Google Scholar] [CrossRef] [PubMed]
- Al-Charrakh, A.H.; Obayes, M.H. First record of isolation and characterization of methicillin-resistant Staphylococcus lugdunensis from clinical samples in Iraq. Biomed. Res. Int. 2014, 2014, 736259. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.Y.; Sung, Y.J.; Lin, H.C.; Peng, C.T.; Tien, N.; Hwang, K.P.; Lu, J.J. The emergence of oxacillin-resistant Staphylococcus lugdunensis carrying staphylococcal cassette chromosome mec type V in central Taiwan. J. Microbiol. Immunol. Infect. 2016, 49, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Barh, D.; Tiwari, S.; Jain, N.; Ali, A.; Santos, A.; Misra, A.N.; Azevedo, V.; Kumar, A. In Silico Subtractive Genomics for Target Identification in Human Bacterial Pathogens. Drug Dev. Res. 2011, 72, 162–177. [Google Scholar] [CrossRef]
- Sakharkar, M.K.; Chow, V.T.; Kangueane, P. Distributions of exons and introns in the human genome. In Silico Biol. 2004, 4, 387–393. [Google Scholar]
- Simeone, R.; Bottai, D.; Brosch, R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr. Opin. Microbiol. 2009, 12, 4–10. [Google Scholar] [CrossRef]
- Rahman, A.; Noore, S.; Hasan, A.; Ullah, R.; Rahman, H.; Hossain, A.; Ali, Y.; Islam, S. Identifying potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach. Comput. Biol. Chem. 2014, 52, 66–72. [Google Scholar] [CrossRef]
- Chong, C.E.; Lim, B.S.; Nathan, S.; Mohamed, R. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets. In Silico Biol. 2006, 6, 341–346. [Google Scholar] [PubMed]
- Uddin, R.; Saeed, K. Identifying and characterizing potential drug targets by subtractive genome analyses of methicillin-resistant Staphylococcus aureus. Comput. Biol. Chem. 2014, 48, 55–63. [Google Scholar] [CrossRef]
- Rahman, N.; Shah, M.; Muhammad, I.; Khan, H.; Imran, M. Genome-wide core proteome analysis of Brucella melitensis strains for potential drug target prediction. Mini-Rev. Med. Chem. 2021, 21, 2778–2787. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, C.S.; Singh, S.; Goel, S.; Ahmed, R.S.; Gupta, S.; Grover, R.K.; Banerjee, B.D. CYP 1A1 polymorphism and organochlorine pesticides levels in the aetiology of prostate cancer. Chemosphere 2010, 81, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Muhammad, I.; Nayab, G.E.; Khan, H.; Filosa, R.; Xiao, J.; Hassan, S.T. In-silico subtractive proteomic analysis approach for therapeutic targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18. Curr. Top. Med. Chem. 2019, 19, 2708–2717. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Saad, S.M.; Khan, K.M.; Nasir, A. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorg. Chem. 2016, 66, 117–123. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: Automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef]
- Mondal, S.I.; Ferdous, S.; Jewel, N.A.; Akter, A.; Mahmud, Z.; Islam, M.M.; Afrin, T.; Karim, N. Identifying potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: An in silico approach. Adv. Appl. Bioinform. Chem. 2015, 8, 49–63. [Google Scholar] [CrossRef]
- Yoon, S.H.; Park, Y.-K.; Kim, J.F. PAIDB v2.0: Exploration and analysis of pathogenicity and resistance islands. Nucleic Acids Res. 2015, 43, D624–D630. [Google Scholar] [CrossRef]
- Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Wishart, D.S.; et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011, 39, D1035–D1041. [Google Scholar] [CrossRef]
- Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef]
- Sears, C.L. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005, 11, 247–251. [Google Scholar] [CrossRef]
- Keely, S.P.; Fischer, J.M.; Cushion, M.T.; Stringer, J.R. Phylogenetic identification of Pneumocystis murina sp. nov., a new species in laboratory mice. Microbiology 2004, 150 Pt 5, 1153–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.D.; Lewis, J.D. Analysis of the human gut microbiome and association with disease. Clin. Gastroenterol. Hepatol. 2013, 11, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Wyatt, H.D.M.; Komorowska, W.; Szczepanowski, R.H.; de Sanctis, D.; Gorecka, K.M.; West, S.C.; Nowotny, M. Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease. Cell Rep. 2015, 10, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for recognizing errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35 (Suppl. 2), W407–W410. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Yin, L.L.; Xu, J.K.; Wang, X.J.; Gao, S.Q.; Lin, Y.W. Molecular Dynamics Simulation and Kinetic Study of Fluoride Binding to V21C/V66C Myoglobin with a Cytoglobin-like Disulfide Bond. Int. J. Mol. Sci. 2020, 21, 2512. [Google Scholar] [CrossRef]
- Chen, S.; He, Y.; Geng, Y.; Wang, Z.; Han, L.; Han, W. Molecular Dynamic Simulations of Bromodomain and Extra-Terminal Protein 4 Bonded to Potent Inhibitors. Molecules 2021, 27, 118. [Google Scholar] [CrossRef]
- Rahman, N.; Ajmal, A.; Ali, F.; Rastrelli, L. Core proteome mediated therapeutic target mining and multi-epitope vaccine design for Helicobacter pylori. Genomics 2020, 112, 3473–3483. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011, 9, 233–243. [Google Scholar] [CrossRef]
- Kufareva, I.; Abagyan, R. Methods of protein structure comparison. Methods Mol. Biol. 2012, 857, 231–257. [Google Scholar] [CrossRef] [Green Version]
- Sargsyan, K.; Grauffel, C.; Lim, C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 1518–1524. [Google Scholar] [CrossRef]
- Sabiu, S.; Balogun, F.O.; Amoo, S.O. Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication. Molecules 2021, 26, 4867. [Google Scholar] [CrossRef]
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. The radius of gyration is an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Emmanuel, I.A.; Olotu, F.; Agoni, C.; Soliman, M.E. Broadening the horizon: Integrative pharmacophore-based and cheminformatics screening of novel chemical modulators of mitochondria ATP synthase towards interventive Alzheimer’s disease therapy. Med. Hypotheses 2019, 130, 109277. [Google Scholar] [CrossRef]
- Basharat, Z.; Jahanzaib, M.; Rahman, N. Therapeutic target identification via differential genome analysis of antibiotic-resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infect. Genet. Evol. 2021, 94, 105004. [Google Scholar] [CrossRef]
S. No. | Steps Followed | No. of Proteins |
---|---|---|
1 | The total proteome of the N920143 strain downloaded from NCBI | 2351 |
2 | Non-paralogous proteins obtained from the CD-HIT tool | 2102 |
3 | Human non-homologous proteins obtained from BLASTp against humans | 980 |
4 | Proteins essential to pathogen survival obtained from DEG | 670 |
5 | Pathways unique to the pathogen | 21 |
6 | Proteins involved in pathogen-unique pathways | 5 |
8 | Analysis of druggability potential of proteins | 5 |
9 | Number of cytoplasmic proteins obtained from CELLO | 3 |
10 | Gut metagenome screening | 1 |
S. No. | Pathway | Metabolic Pathway |
---|---|---|
1 | sln00280 | Lysine biosynthesis |
2 | sln00550 | Peptidoglycan biosynthesis |
3 | sln00121 | Secondary bile acid biosynthesis |
4 | sln00053 | Ascorbate and aldarate metabolism |
5 | sln02020 | Two-component system |
6 | sln00261 | Monobactam biosynthesis |
7 | sln01110 | Biosynthesis of secondary metabolites |
8 | sln02024 | Quorum sensing |
9 | sln01210 | 2-Oxocarboxylic acid metabolism |
10 | sln00460 | Cyanoamino acid metabolism |
11 | sln00622 | Xylene degradation |
12 | sln01220 | Degradation of aromatic compounds |
13 | sln00450 | Selenocompound metabolism |
14 | sln01501 | beta-Lactam resistance |
15 | sln00521 | Streptomycin biosynthesis |
16 | sln03070 | Bacterial secretion system |
17 | sln00860 | Porphyrin and chlorophyll metabolism |
18 | sln01502 | Vancomycin resistance |
19 | sln01503 | CAMP resistance |
20 | sln00660 | Biosynthesis of siderophore group non-ribosomal Peptides |
21 | sln01120 | Microbial metabolism in diverse environments |
S. No. | Accession No. | Drug Bank Target | Drug Bank ID |
---|---|---|---|
1 | WP_002460335.1 | P0A6K3 Peptide deformylase | DB01942 |
2 | WP_014533179.1 | P04217 Alpha-1B-glycoprotein | DB01593 |
3 | WP_002459785.1 | P17405 Sphingomyelin phosphodiesterases | DB01151 |
4 | WP_002491992.1 | Q13231 Chitotriosidase-1 | DB02325 |
5 | WP_002459785.1 | P17405 Sphingomyelin phosphodiesterase | DB01151 |
S. No. | Accession No. | KEGG ID | Target Name | Pathway Name |
---|---|---|---|---|
1 | WP_002478208.1 | K00215 | 4-hydroxtetrahydrodipicolinate reductase | Monobactam biosynthesis |
2 | WP_002461066.1 | K03100 | Signal peptidase | Quorum sensing |
3 | WP_002460335.1 | K07705 | DNA-binding response regulator | Two-component system |
4 | WP_026050227.1 | K06153 | Genome polyprotein | Bacterial secretion system |
5 | WP_011079778.1 | K02034 | Chloride channel protein 2 | beta-lactam resistance |
S. No. | ZINC ID | S Score | Interacting Residues | Energy |
---|---|---|---|---|
1 | ZINC000020192004 | −16.231 | ALA 74 ASP 48 ALA 74 LYS 69 ALA 74 | −5.0 −1.6 −1.0 −1.0 −1.1 |
2 | ZINC000020530348 | −14.187 | ALA 74 ALA 74 ALA 74 ASN 94 | −6.1 −2.7 −0.6 −1.1 |
3 | ZINC000035239931 | −13.211 | ALA 74 ARG 117 LYS 69 | −3.0 −1.3 −0.6 |
4 | ZINC000021883347 | −10.811 | ASN 94 LYS 69 | −1.3 −6.3 |
5 | ZINC000012630694 | −9.337 | GLN 72 HIS 73 | −5.3 −0.7 |
6 | ZINC000012631011 | −8.112 | LYS 69 | −7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamhoom, Y.; Hani, U.; Bennani, F.E.; Rahman, N.; Rashid, M.A.; Abbas, M.N.; Rastrelli, L. Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies. Bioengineering 2022, 9, 451. https://doi.org/10.3390/bioengineering9090451
Alhamhoom Y, Hani U, Bennani FE, Rahman N, Rashid MA, Abbas MN, Rastrelli L. Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies. Bioengineering. 2022; 9(9):451. https://doi.org/10.3390/bioengineering9090451
Chicago/Turabian StyleAlhamhoom, Yahya, Umme Hani, Fatima Ezzahra Bennani, Noor Rahman, Md Abdur Rashid, Muhammad Naseer Abbas, and Luca Rastrelli. 2022. "Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies" Bioengineering 9, no. 9: 451. https://doi.org/10.3390/bioengineering9090451
APA StyleAlhamhoom, Y., Hani, U., Bennani, F. E., Rahman, N., Rashid, M. A., Abbas, M. N., & Rastrelli, L. (2022). Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies. Bioengineering, 9(9), 451. https://doi.org/10.3390/bioengineering9090451