The Role of Functional Beverages in Mitigating Cardiovascular Disease Risk Factors: A Focus on Their Antidiabetic and Hypolipidemic Properties
Abstract
:1. Introduction
2. Diabetes Mellitus
2.1. Classification of Diabetes Mellitus
2.1.1. Type 1 Diabetes Mellitus
2.1.2. Type 2 Diabetes Mellitus
2.1.3. Gestational Diabetes Mellitus
2.2. Diagnosis, Symptoms and Treatment of Diabetes Mellitus
3. Hyperlipidaemia
3.1. Classification and Aetiology of Hyperlipidaemia
- Hypercholesterolaemia: elevated blood cholesterol levels;
- Hypertriglyceridaemia: elevated blood triglyceride levels;
- Mixed Hyperlipidaemia: elevated levels of both cholesterol and triglycerides.
3.2. Diagnosis, Symptoms and Treatment of Hyperlipidaemia
4. Beverages with Antidiabetic and Hypolipidemic Properties
4.1. Herbal Teas
4.2. Fruit and Vegetable Drinks
4.3. Milk-Based Beverages
4.4. Plant-Based and Food-Waste-Derived Functional Beverages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, M.; Mei, A.; Min, X.; Yang, H.; Wu, W.; Zhong, J.; Li, C.; Chen, J. Advancements in Cardiovascular Disease Research Affected by Smoking. Rev. Cardiovasc. Med. 2024, 25, 298. [Google Scholar] [CrossRef]
- Soltani, S.; Saraf-Bank, S.; Basirat, R.; Salehi-Abargouei, A.; Mohammadifard, N.; Sadeghi, M.; Khosravi, A.; Fadhil, I.; Puska, P.; Sarrafzadegan, N. Community-based cardiovascular disease prevention programmes and cardiovascular risk factors: A systematic review and meta-analysis. Public Health 2021, 200, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.K.; Rafiq, T. Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can. J. Cardiol. 2021, 37, 733–743. [Google Scholar] [CrossRef]
- Bays, H.E.; Kulkarni, A.; German, C.; Satish, P.; Iluyomade, A.; Dudum, R.; Thakkar, A.; Rifai, M.A.; Mehta, A.; Thobani, A.; et al. Ten things to know about ten cardiovascular disease risk factors. Am. J. Prev. Cardiol. 2022, 10, 100342. [Google Scholar] [CrossRef]
- Yun, J.S.; Ko, S.H. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism 2021, 123, 154838. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. Pediatr. Rev. 2020, 41, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Dharmayat, K.I.; Stevens, C.A.T.; Sharabiani, M.T.A.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A.J. Prevalence of Familial Hypercholesterolemia Among the General Population and Patients With Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis. Circulation 2020, 141, 1742–1759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sanwal, N.; Bareen, M.A.; Barua, S.; Sharma, N.; Joshua Olatunji, O.; Prakash Nirmal, N.; Sahu, J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res. Int. 2023, 170, 113046. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, K.; Vigna, G.B. Hypolipidemic drugs in elderly subjects: Indications and limits. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1064–1070. [Google Scholar] [CrossRef]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef] [PubMed]
- Amran, S.-A.; Hamah, N.; Wan Ishak, W.R.; Mohamad Ibrahim, M.N.; Ahmad, N.F.; Zawawi, M.H.; Abdullah, Z.; Safuan, S. Potential of functional drink fortified with plant extract as anti-diabetic agent: A systematic review. Nutrire 2024, 49, 43. [Google Scholar] [CrossRef]
- Carvalho, F.; Lahlou, R.A.; Pires, P.; Salgado, M.; Silva, L.R. Natural Functional Beverages as an Approach to Manage Diabetes. Int. J. Mol. Sci. 2023, 24, 16977. [Google Scholar] [CrossRef]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Saha, P.; Kumar, Y.; Sahana, S.; Dubey, A.; Prakash, O. A review on diabetes mellitus: Type1 & Type2. World J. Pharm. Pharm. Sci. 2020, 9, 838–850. [Google Scholar] [CrossRef]
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Diagnosis, classification, and pathogenesis of diabetes mellitus. J. Clin. Psychiatry 2001, 62, 5–9. [Google Scholar]
- Suryasa, I.W.; Rodríguez-Gámez, M.; Koldoris, T. Health and treatment of diabetes mellitus. Int. J. Health Sci. 2021, 5, 1–5. [Google Scholar] [CrossRef]
- Deshmukh, C.D.; Jain, A.; Nahata, B. Diabetes mellitus: A review. Int. J. Pure Appl. Biosci. 2015, 3, 224–230. [Google Scholar]
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between Hyperlipidemia, Cardiovascular Disease and Stroke: A Systematic Review. Curr. Cardiol. Rev. 2021, 17, e051121189015. [Google Scholar] [CrossRef]
- Kim, M.K.; Han, K.; Kim, H.S.; Yoon, K.H.; Lee, S.H. Lipid cutoffs for increased cardiovascular disease risk in non-diabetic young people. Eur. J. Prev. Cardiol. 2022, 29, 1866–1877. [Google Scholar] [CrossRef]
- Park, A. Hyperlipidaemia. Medicine 2009, 37, 497–499. [Google Scholar] [CrossRef]
- De Costa, G.; Park, A. Hyperlipidaemia. Medicine 2017, 45, 579–582. [Google Scholar] [CrossRef]
- Sotiriadis, D.; Patsatsi, A. Xanthomas. In European Handbook of Dermatological Treatments; Katsambas, A.D., Lotti, T.M., Dessinioti, C., D’Erme, A.M., Eds.; Springer International Publishing: Cham, Germany, 2023; pp. 1123–1132. [Google Scholar]
- Assimiti, D. Presence of Corneal Arcus as a Non-invasive Method of Screening for Dyslipidemia and Its Educational Role in Lifestyle Interventions. Curr. Dev. Nutr. 2024, 8, 103236. [Google Scholar] [CrossRef]
- Lustig-Barzelay, Y.; Kapelushnik, N.; Goldshtein, I.; Leshno, A.; Segev, S.; Ben-Simon, G.J.; Landau-Prat, D. Association Between Xanthelasma Palpebrarum with Cardiovascular Risk and Dyslipidemia: A Case Control Study. Ophthalmology 2024, 132, S0161–S6420. [Google Scholar] [CrossRef]
- Toth, P.P. Drug treatment of hyperlipidaemia: A guide to the rational use of lipid-lowering drugs. Drugs 2010, 70, 1363–1379. [Google Scholar] [CrossRef]
- AT, D.; Action, E. Scientific concepts of functional foods in Europe: Consensus document. Br. J. Nutr. 1999, 81, S1–S27. [Google Scholar] [CrossRef]
- Intrasook, J.; Tsusaka, T.W.; Anal, A.K. Trends and current food safety regulations and policies for functional foods and beverages containing botanicals. J. Food Drug Anal. 2024, 32, 112–139. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods: Commercial trends, research, and health implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Dechakhamphu, A.; Wongchum, N.; Chumroenphat, T.; Tanomtong, A.; Pinlaor, S.; Siriamornpun, S. In Vitro and In Vivo Evaluation for Antioxidant and Anti-Diabetic Properties of Cyperus rotundus L. Kombucha. Foods 2023, 12, 4059. [Google Scholar] [CrossRef] [PubMed]
- Pawlus, P.; Kolniak-Ostek, J. Innovative Analogs of Unpasteurized Kombucha Beverages: Comparative Analysis of Mint/Nettle Kombuchas, Considering Their Health-Promoting Effect, Polyphenolic Compounds and Chemical Composition. Int. J. Mol. Sci. 2024, 25, 7572. [Google Scholar] [CrossRef] [PubMed]
- Nova-Baza, D.; Olivares-Caro, L.; Vallejos-Almirall, A.; Mennickent, D.; Sáez-Orellana, F.; Bustamante, L.; Radojkovic, C.; Vergara, C.; Fuentealba, J.; Mardones, C. Evaluation of the bioactivity of Berberis microphylla G. Forst (Calafate) leaves infusion. Food Biosci. 2024, 62, 105097. [Google Scholar] [CrossRef]
- Vasić, D.; Katanić Stanković, J.S.; Urošević, T.; Kozarski, M.; Naumovski, N.; Khan, H.; Popović-Djordjević, J. Insight into Bioactive Compounds, Antioxidant and Anti-Diabetic Properties of Rosehip (Rosa canina L.)-Based Tisanes with Addition of Hibiscus Flowers (Hibiscus sabdariffa L.) and Saffron (Crocus sativus L.). Beverages 2023, 10, 1. [Google Scholar] [CrossRef]
- Xia, X.; Xu, J.; Wang, X.; Wang, H.; Lin, Z.; Shao, K.; Fang, L.; Zhang, C.; Zhao, Y. Jiaogulan tea (Gpostemma pentaphyllum) potentiates the antidiabetic effect of white tea via the AMPK and PI3K pathways in C57BL/6 mice. Food Funct. 2020, 11, 4339–4355. [Google Scholar] [CrossRef]
- Shao, Y.; Lin, L.; Xu, W.; Gong, Z.; Li, J.; Zhang, J.; Yan, X.; Liu, Z.; Xiao, W. Investigation on Quality Characteristics and Antidiabetic Properties of Mulberry Leaf Fu Brick Tea. J. Food Biochem. 2024, 2024, 8826062. [Google Scholar] [CrossRef]
- Werdani, Y.D.W.; Widyawati, P.S. Antidiabetic effect on tea of Pluchea indica Less as functional beverage in diabetic patients. In Proceedings of the 1st International Conference Postgraduate School Universitas Airlangga: “Implementation of Climate Change Agreement to Meet Sustainable Development Goals”(ICPSUAS 2017), Surabaya, Indonesia, 1–2 August 2017; pp. 164–167. [Google Scholar]
- Cornelia, M.; Anggraini, M. Healthy drinks made from okra and green tea extract for reducing blood cholesterol. Food Res. 2020, 4, 468–473. [Google Scholar] [CrossRef]
- Deng, X.; Hou, Y.; Zhou, H.; Li, Y.; Xue, Z.; Xue, X.; Huang, G.; Huang, K.; He, X.; Xu, W. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Sci. Nutr. 2021, 9, 1160–1170. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhong, K.; Bai, J.-R.; Wu, Y.-P.; Zhang, J.-Q.; Gao, H. The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. Food Sci. Technol. 2020, 117, 108629. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, Z.; Xiang, S.; Zhu, X.; Hou, C.; Hao, B.; Wang, L.; Fan, Y.; Qin, J.; Niu, X. Anti-obesity and hypolipidemic effects of” Jinhua Xiangyuan” tea infusion in high-fat diet-induced obese rats. Bev. Plant Res. 2023, 3, 125–139. [Google Scholar] [CrossRef]
- Widyawati, P.S.; Suseno, T.I.P.; Utomo, A.; Willianto, T.; Yohanita, C.; Wulandar, T. Effect of lemon (Citrus limon L.) addition to Pluchea indica less beverage. Carpath. J. Food Sci. Technol. 2020, 12. [Google Scholar] [CrossRef]
- Maselesele, T.L.; Molelekoa, T.B.J.; Gbashi, S.; Adebo, O.A. Development of a fermented bitter gourd (Momordica charantia)–grape beverage using optimized conditions. Fermentation 2022, 8, 439. [Google Scholar] [CrossRef]
- Andrade, V.T.; de Castro, R.J.S. Fermented grain-based beverages as probiotic vehicles and their potential antioxidant and antidiabetic properties. Biocatal. Agric. Biotechnol. 2023, 53, 102873. [Google Scholar] [CrossRef]
- Gedik, P.U.; Aydin, E.; Ozkan, G.; Ozcelik, M.M. Production of Encapsulated Hydrogel Beads and Sugar-Free Beverage from Gilaburu Fruit Rich in Antioxidants, Antidiabetic Bioactives, and its Microwave-Assisted Extraction Optimization. Braz. Arch. Biol. Technol. 2024, 67, e24230018. [Google Scholar] [CrossRef]
- Yin, S.; Niu, L.; Zhang, J.; Yang, W.; Liu, Y. Berry beverages: From bioactives to antidiabetes properties and beverage processing technology. Food Front. 2024, 5, 1445–1475. [Google Scholar] [CrossRef]
- Wilson, T.; Singh, A.P.; Vorsa, N.; Goettl, C.D.; Kittleson, K.M.; Roe, C.M.; Kastello, G.M.; Ragsdale, F.R. Human glycemic response and phenolic content of unsweetened cranberry juice. J. Med. Food 2008, 11, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shang, Y.; Li, F.; Liu, J.; Wang, D.; Zhang, Y.; Yu, X.; Wang, W. Effects of cholesterol-lowering probiotic fermentation on the active components and in vitro hypolipidemic activity of sea buckthorn juice. J. Food Sci. 2024, 89, 6308–6320. [Google Scholar] [CrossRef] [PubMed]
- Ariviani, S.; Affandi, D.; Listyaningsih, E.; Handajani, S. The potential of pigeon pea (Cajanus cajan) beverage as an anti-diabetic functional drink. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; p. 012054. [Google Scholar]
- Gunathilake, K.; Wang, Y.; Rupasinghe, H.V. Hypocholesterolemic and hypotensive effects of a fruit-based functional beverage in spontaneously hypertensive rats fed with cholesterol-rich diet. J. Funct. Foods 2013, 5, 1392–1401. [Google Scholar] [CrossRef]
- Daskalova, E.; Delchev, S.; Vladimirova-Kitova, L.; Kitov, S.; Denev, P. Black Chokeberry (Aronia melanocarpa) Functional Beverages Increase HDL-Cholesterol Levels in Aging Rats. Foods 2021, 10, 1641. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Pei, W.; Chen, T.C.; Hsu, M.C.; Chen, P.C.; Kuo, H.M.; Hung, J.F.; Chen, Y.L. Optimized Sugar-Free Citrus Lemon Juice Fermentation Efficiency and the Lipid-Lowering Effects of the Fermented Juice. Nutrients 2023, 15, 5089. [Google Scholar] [CrossRef]
- Arise, A.K.; Malomo, S.A.; Acho, M.A.; Ajao-Azeez, N.D.; Arise, R.O. In vivo anti-diabetic activity, physicochemical and sensory properties of Kunu enriched with African walnut. Food Chem. Adv. 2023, 2, 100315. [Google Scholar] [CrossRef]
- Cerrillo, I.; Escudero-Lopez, B.; Ortega, A.; Martin, F.; Fernandez-Pachon, M.S. Effect of daily intake of a low-alcohol orange beverage on cardiovascular risk factors in hypercholesterolemic humans. Food Res. Int. 2019, 116, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Khongrum, J.; Yingthongchai, P.; Boonyapranai, K.; Wongtanasarasin, W.; Donrung, N.; Sukketsiri, W.; Prachansuwan, A.; Chonpathompikunlert, P. Antidyslipidemic, Antioxidant, and Anti-inflammatory Effects of Jelly Drink Containing Polyphenol-Rich Roselle Calyces Extract and Passion Fruit Juice with Pulp in Adults with Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Trial. Oxid. Med. Cell Longev. 2022, 2022, 4631983. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, P.A.; Butt, M.S.; Haq, I.-U.; Tariq, U. Effect of Carrot-Beet Based Beverages to Modulate Hypertension. UCP J. Sci. Technol. 2023, 1, 1. [Google Scholar]
- Aiello, F.; Restuccia, D.; Spizzirri, U.G.; Carullo, G.; Leporini, M.; Loizzo, M.R. Improving kefir bioactive properties by functional enrichment with plant and agro-food waste extracts. Fermentation 2020, 6, 83. [Google Scholar] [CrossRef]
- Carullo, G.; Governa, P.; Spizzirri, U.G.; Biagi, M.; Sciubba, F.; Giorgi, G.; Loizzo, M.R.; Di Cocco, M.E.; Aiello, F.; Restuccia, D. Sangiovese cv Pomace Seeds Extract-Fortified Kefir Exerts Anti-Inflammatory Activity in an In Vitro Model of Intestinal Epithelium Using Caco-2 Cells. Antioxidants 2020, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Spizzirri, U.G.; Montopoli, M.; Cocetta, V.; Armentano, B.; Tinazzi, M.; Sciubba, F.; Giorgi, G.; Enrica Di Cocco, M.; Bohn, T. Milk kefir enriched with inulin-grafted seed extract from white wine pomace: Chemical characterisation, antioxidant profile and in vitro gastrointestinal digestion. Int. J. Food Sci. Technol. 2022, 57, 4086–4095. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Loizzo, M.R.; Aiello, F.; Prencipe, S.A.; Restuccia, D. Non-dairy kefir beverages: Formulation, composition, and main features. J. Food Compos. Anal. 2023, 117, 105130. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Jing, L.; Liu, L.; Pang, X.; Lv, J. Bioactive assessment of the antioxidative and antidiabetic activities of oleanane triterpenoid isolates of sprouted quinoa yoghurt beverages and their anti-angiogenic effects on HUVECS line. J. Funct. Foods 2020, 66, 103779. [Google Scholar] [CrossRef]
- Ujiroghene, O.J.; Liu, L.; Zhang, S.; Lu, J.; Zhang, C.; Pang, X.; Lv, J. Potent alpha-amylase inhibitory activity of sprouted quinoa-based yoghurt beverages fermented with selected anti-diabetic strains of lactic acid bacteria. RSC Adv. 2019, 9, 9486–9493. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.S.; Santos, M.L.; Abreu, J.P.; Rocha, R.S.; Esmerino, E.A.; Freitas, M.Q.; Marsico, E.T.; Campelo, P.H.; Pimentel, T.C.; Cristina Silva, M.; et al. Probiotic fermented whey-milk beverages: Effect of different probiotic strains on the physicochemical characteristics, biological activity, and bioactive peptides. Food Res. Int. 2023, 164, 112396. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Y.; Wang, Y.; Su, E.; Du, L.; Tang, Y.J.; Xie, J.; Wei, D. Hypolipidemic effects of the fermented soymilk with a novel Lactiplantibacillus plantarum strain X7021 on mice via modulating lipid metabolism and gut microbiota. Int. J. Food Sci. Technol. 2022, 57, 4555–4565. [Google Scholar] [CrossRef]
- Rendón-Rosales, M.A.; Mazorra-Manzano, M.A.; Hernández-Mendoza, A.n.; González-Córdova, A.F.; Vallejo-Cordoba, B. Hypocholesterolemic Effect of Milks Fermented with Specific Strains of Lactococcus lactis in Hypercholesterolemic Sprague–Dawley Rats. ACS Food Sci. Technol. 2023, 3, 1440–1448. [Google Scholar] [CrossRef]
- Arumugam, S.; Dioletis, E.; Paiva, R.; Fields, M.R.; Weiss, T.R.; Secor, E.R.; Ali, A. Fermented Soy Beverage Q-CAN Plus Consumption Improves Serum Cholesterol and Cytokines. J. Med. Food 2020, 23, 560–563. [Google Scholar] [CrossRef]
- Chau, Y.-P.; Cheng, Y.-C.; Sing, C.-W.; Tsoi, M.-F.; Cheng, V.K.-F.; Lee, G.K.-Y.; Cheung, C.-L.; Cheung, B.M. The lipid-lowering effect of once-daily soya drink fortified with phytosterols in normocholesterolaemic Chinese: A double-blind randomized controlled trial. Eur. J. Nut. 2020, 59, 2739–2746. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef]
- Badejo, A.A.; Falarunu, A.J.; Duyilemi, T.I.; Fasuhanmi, O.S. Antioxidative and anti-diabetic potentials of tigernut (Cyperus esculentus) sedge beverages fortified with Vernonia amygdalina and Momordica charantia. J. Food Meas. Charact. 2020, 14, 2790–2799. [Google Scholar] [CrossRef]
- Salas-Millán, J.Á.; Conesa-Bueno, A.; Aguayo, E. A novel antidiabetic lactofermented beverage from agro-industrial waste (broccoli leaves): Process optimisation, phytochemical characterisation, and shelf-life through thermal treatment and high hydrostatic pressure. Food Biosci. 2024, 59, 103999. [Google Scholar] [CrossRef]
- Kham, N.N.N.; Phovisay, S.; Unban, K.; Kanpiengjai, A.; Saenjum, C.; Lumyong, S.; Shetty, K.; Khanongnuch, C. Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods 2024, 13, 1469. [Google Scholar] [CrossRef] [PubMed]
- Demircan, C.; Aydin, E.; Ozkan, G.; Ozcelik, M.M. Sugar-free functional sweet basil drink: Ultrasound-assisted extraction, process optimization, antioxidant and antidiabetic activity. J. Food Meas. Charact. 2023, 17, 4530–4540. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Oyeleye, S.I.; Oboh, G. Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. Comp. Clin. Path 2016, 25, 169–176. [Google Scholar] [CrossRef]
- Swami, U.; Rishi, P.; Soni, S.K. Anti-diabetic, hypolipidemic and hepato-renal protective effect of a novel fermented beverage from Syzygium cumini stem. Int. J. Pharm. Sci. Res. 2017, 8, 1336–1345. [Google Scholar] [CrossRef]
- Sabrina, N.; Pujilestari, S.; Azni, I.N.; Amelia, J.R.; Surbakti, F.H.; Rismawati, A. Anti diabetic and anti hypercholesterolemia potential of Abelmoschus esculentus (okra) functional beverage with ginger extract in streptozotocin-induced diabetic mice. Nat. Volatiles Essent. Oils 2021, 8, 4405–4412. [Google Scholar]
Study Type | Herbal Tea | Model/Participants | Dosage and Duration of the Treatment | Bioactive Compounds in Matrices | Reference |
---|---|---|---|---|---|
In vitro & In vivo | C. rotundus kombucha | In vitro: anti-alpha glucosidase activity In vivo: D. melanogaster Oregon-R-C strain | In vivo: kombucha was diluted to concentrations of 400 and 100 µL/mL with water | Epicatechin, chlorogenic acid, stigmasterol and 3-deoxy-D-mannoic lactone | [31] |
In vitro | Mint- and nettle-based kombucha | α-amylase and α-glucosidase inhibition assay | Not applicable | Fermentation increased the content of polyphenols, such as gallic acid, caffeic acid, luteolin-diglycoside and quercetin derivatives | [32] |
In vitro | Berberis microphylla leaves | Lipase, α-amylase, α-glucosidase inhibition assay | Not applicable | 3-caffeoylquinic acid and quercetin derivatives | [33] |
In vitro | Rosehip (Rosa canina L.)-based tisanes enriched with hibiscus and saffron | α-amylase inhibition assay | Not applicable | Polyphenols | [34] |
In vivo | White tea combined with Gynostemma pentaphyllum (Jiaogulan) | Male C57BL/6 mice | Free access to 2% (w/v) fresh infusions for 6 weeks | Polyphenols | [35] |
In vivo | Mulberry leaf Fu brick tea | Male C57BL/6 mice | 520 mg/kg of aqueous extracts daily for 4 weeks | 1-deoxynojirimycin: reduces the absorption of carbohydrates in the small intestine Caffeine and GABA: protective and regenerative effects of islet beta cells Kaempferol: stimulates glycogen synthesis | [36] |
Clinical trial | Pluchea indica Less tea | 21 diabetic patients | 2 g of tea with 100 cc of hot water (without sugar), twice a day for two months | Flavonoids | [37] |
In vitro & In vivo | Green tea (Camellia sinensis) and okra seeds | In vitro: inhibition of cholesterol through a photometrical assay based on the Lieberman-Burchard reaction In vivo: rats | In vivo: 2 mL/200 g/day for 21 weeks | Flavonoids | [38] |
In vivo | Monascus purpureus-fermented pu-erh tea water extract | SPF inbred Sprague Dawley rats | 125 mg/kg.bw, 250 mg/kg.bw and 500 mg/kg.bw for 4 weeks | Caffeine, catechin, epicatechin, flavonoids, tea polyphenols and thearubigin | [39] |
In vivo | E. cristatum (MF800948)-fermented loose tea | Zebrafish (AB strain) | They were exposed to different concentrations of aqueous extract: 100, 300, 500 and 700 μg/mL for 48 h | Fermentation increased the content of alkaloids and theabrownin | [40] |
In vivo | Jinhua Xigyuan | Male SD rats | 0.4 g/kg·bw, 0.8 g/kg·bw and 1.6 g/kg·bw for 10 weeks | Epigallocatechin | [41] |
Fruit or Vegetable Drink | Animal Model | Dosage and Duration of the Treatment | Findings | Bioactive Compounds in Matrices | Reference |
---|---|---|---|---|---|
Pigeon pea beverage | Male Sprague Dawley rats | Beverage dissolved in distilled water at doses of 2.7 g/kg body weight for two weeks | Reduction in plasma cholesterol level; Reduction in plasma glucose level. | Antioxidant and dietary fiber compounds | [49] |
Beverage with cranberry, apple and blueberry juices, water extract of ginger, Se, Zn, K, vitamin B6, arginine and taurine. | Male rats | 0.5X, X and 2X (X = 700 mL) per day, for 40 days. | At 1X and 2X doses, there was a reduction in TC, non-HDL-C and triacylglycerol levels. | Quercetin-3-O-galactoside, quercetin-3-O-rutinoside, chlorogenic acid, 6-gingerol (known for anti-atherogenic effects) and 6-shogaol | [50] |
| Male Wistar rats | 10 mL/kg for three months | The HDL-C value increased, while the TC/HDL index decreased. The LDL/HDL index increased. | Anthocyanins, proanthocyanidins, β-sitosterol, campesterol, quercetin, kaempferol, catechin | [51] |
Fermented lemon juice | Male Syrian hamsters | Low-dose (3.1 mL/kg/day), medium-dose (6.2 mL/kg/day), and high-dose (9.3 mL/kg/day) groups. Every day for 6 weeks. | TC, TG and LDL-C values were significantly lower. The LDL/HDL index increased. | Bioflavonoid, specially naringenin | [52] |
African walnut enriched- kunu beverage | Wistar male albino rats | 2 mL three times a day for 14 days. | Decreased fasting blood glucose level. | Lignin, dietary fiber, L-arginine, folic acid | [53] |
Identified Bioactive Compounds | Reported Biological Activities | Reference |
---|---|---|
Vicine, charantin and polypeptide-p | Vicine is an alkaloid glycoside with hypoglycaemic activity, like charantin Polypeptide-p is a hypoglycaemic peptide, often called plant insulin | [43] |
Caffeic acid, quercetin | The interaction between oligosaccharide content and coating material chitosan increase the inhibition of α-glucosidase activity, while quercetin and caffeic acid may support this activity. | [45] |
Rutin and epicatechin | They reduce blood lipid levels | [48] |
Hesperidin, narirutin, vicenin-2 and auroxantin | Probably there is a synergistic effect of alcohol and the polyphenols and carotenoids present | [54] |
Anthocyanins and β-carotene | β-carotene is able to reduce circulating cholesterol at high plasma concentrations | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarcelli, E.; Iacopetta, D.; Ceramella, J.; Bonofiglio, D.; Conforti, F.L.; Aiello, F.; Sinicropi, M.S. The Role of Functional Beverages in Mitigating Cardiovascular Disease Risk Factors: A Focus on Their Antidiabetic and Hypolipidemic Properties. Beverages 2025, 11, 21. https://doi.org/10.3390/beverages11010021
Scarcelli E, Iacopetta D, Ceramella J, Bonofiglio D, Conforti FL, Aiello F, Sinicropi MS. The Role of Functional Beverages in Mitigating Cardiovascular Disease Risk Factors: A Focus on Their Antidiabetic and Hypolipidemic Properties. Beverages. 2025; 11(1):21. https://doi.org/10.3390/beverages11010021
Chicago/Turabian StyleScarcelli, Eva, Domenico Iacopetta, Jessica Ceramella, Daniela Bonofiglio, Francesca Luisa Conforti, Francesca Aiello, and Maria Stefania Sinicropi. 2025. "The Role of Functional Beverages in Mitigating Cardiovascular Disease Risk Factors: A Focus on Their Antidiabetic and Hypolipidemic Properties" Beverages 11, no. 1: 21. https://doi.org/10.3390/beverages11010021
APA StyleScarcelli, E., Iacopetta, D., Ceramella, J., Bonofiglio, D., Conforti, F. L., Aiello, F., & Sinicropi, M. S. (2025). The Role of Functional Beverages in Mitigating Cardiovascular Disease Risk Factors: A Focus on Their Antidiabetic and Hypolipidemic Properties. Beverages, 11(1), 21. https://doi.org/10.3390/beverages11010021