A Freshly Prepared Guava and Mamey Beverage Induces Subjective Satiety in Healthy Adults, Similar to a Commercial Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Pulps and Reagents
2.2. DPPH Radical Scavenging Activity
2.3. ABTS Assay
2.4. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5. Total Phenolic Content (TPC) by Fast Blue BB (FBBB)
2.6. Vitamin C, Carotenoids, and Total Fiber
2.7. Beverages
2.8. Participants
2.9. Study Design
2.10. Satiety Analyses
2.11. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) |
ANOVA | analysis of variance |
AUC | area under the curve |
BF | body fat |
BMI | body mass index |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
FBBB | fast blue BB |
FRAP | ferric reducing antioxidant power |
GAEsMM | gallic acid equivalentsmuscle mass |
TEs | Trolox equivalents |
TPC | total phenolic content |
TPTZ | 2,4,6-tri-(2-pyridyl)-S-triazine |
UPLC-DAD | ultra-performance liquid chromatography system with a diode array detector |
VAS | visual analogue scale |
References
- Ahmed, M.R. Household consumption expenditure behaviour towards outside ready-made food: Evidence from Bangladesh. Heliyon 2023, 9, e19793. [Google Scholar] [CrossRef]
- Gupta, A.; Sanwal, N.; Bareen, M.A.; Barua, S.; Sharma, N.; Olatunji, O.J.; Nirmal, N.P.; Sahu, J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res. Int. 2023, 170, 113046. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Bremer, P.; Mirosa, M. Functional Beverages in Selected Countries of Asia Pacific Region: A Review. Beverages 2020, 6, 21. [Google Scholar] [CrossRef]
- Meng, Y.T.; Li, S.Q.; Khan, J.; Dai, Z.J.; Li, C.; Hu, X.S.; Shen, Q.; Xue, Y. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2636. [Google Scholar] [CrossRef] [PubMed]
- Carriedo, A.; Koon, A.D.; Encarnación, L.M.; Lee, K.; Smith, R.; Walls, H. The political economy of sugar-sweetened beverage taxation in Latin America: Lessons from Mexico, Chile and Colombia. Global. Health 2021, 17, 5. [Google Scholar] [CrossRef]
- Pedraza, L.S.; Popkin, B.M.; Adair, L.; Robinson, W.R.; Taillie, L.S. Mexican households’ food shopping patterns in 2015: Analysis following nonessential food and sugary beverage taxes. Public Health Nutr. 2021, 24, 2225–2237. [Google Scholar] [CrossRef]
- Contreras-Manzano, A.; Cruz-Casarrubias, C.; Munguía, A.; Jáuregui, A.; Vargas-Meza, J.; Nieto, C.; Tolentino-Mayo, L.; Barquera, S. Evaluation of the Mexican warning label nutrient profile on food products marketed in Mexico in 2016 and 2017: A cross-sectional analysis. PLoS Med. 2022, 19, e1003968. [Google Scholar] [CrossRef]
- Batis, C.; Gatica-Domínguez, G.; Marrón-Ponce, J.A.; Colchero, A.; Rivera, J.A.; Barquera, S.; Stern, D. Price Trends of Healthy and Less Healthy Foods and Beverages in Mexico from 2011–2018. J. Acad. Nutr. Diet. 2022, 122, 309–319.e16. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Santillo, A.; Guimaraes, J.T.; Capozzi, V.; Russo, P.; Caroprese, M.; Marino, R.; Esmerino, E.A.; Raices, R.S.L.; Silva, M.C.; et al. Novel milk-juice beverage with fermented sheep milk and strawberry (Fragaria × ananassa): Nutritional and functional characterization. J. Dairy Sci. 2019, 102, 10724–10736. [Google Scholar] [CrossRef]
- Angulo-López, J.E.; Flores-Gallegos, A.C.; Torres-León, C.; Ramírez-Guzmán, K.N.; Martínez, G.A.; Aguilar, C.N. Guava (Psidium guajava L.) Fruit and Valorization of Industrialization By-Products. Processes 2021, 9, 1075. [Google Scholar] [CrossRef]
- Fu, L.; Lu, W.Q.; Zhou, X.M. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. Biomed. Res. Int. 2016, 2016, 4287461. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, W.N.L.; Sauthier, M.C.D.; dos Santos, A.M.P.; Santana, D.D.; Azevedo, R.S.A.; Caldas, J.D. Simultaneous determination of 13 phenolic bioactive compounds in guava (Psidium guajava L.) by HPLC-PAD with evaluation using PCA and Neural Network Analysis (NNA). Microchem. J. 2017, 133, 583–592. [Google Scholar] [CrossRef]
- López-Morales, G.; López-Páez, M.F.; López, P.; Carriles, R.; Vilchis, H. Detection of moisture ratio and carotenoid compounds in mamey (Pouteria sapota) fruit during dehydration process using spectroscopic techniques. J. Food Sci. Technol. Mys. 2023, 60, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Belmonte-Herrera, B.H.; Domínguez-Avila, J.A.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Preciado-Saldaña, A.M.; Salazar-López, N.J.; López-Martínez, L.X.; Yahia, E.M.; Robles-Sánchez, R.M.; González-Aguilar, G.A. Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022, 14, 3663. [Google Scholar] [CrossRef]
- Smith, P.M.; Ferguson, A.V. Neurophysiology of hunger and satiety. Dev Disabil Res Rev 2008, 14, 96–104. [Google Scholar] [CrossRef]
- Tacad, D.K.M.; Tovar, A.P.; Richardson, C.E.; Horn, W.F.; Krishnan, G.P.; Keim, N.L.; Krishnan, S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv. Nutr. 2022, 13, 792–820. [Google Scholar] [CrossRef]
- Zanchi, D.; Depoorter, A.; Egloff, L.; Haller, S.; Mählmann, L.; Lang, U.E.; Drewe, J.; Beglinger, C.; Schmidt, A.; Borgwardt, S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017, 80, 457–475. [Google Scholar] [CrossRef]
- Cázares-Camacho, R.; Domínguez-Avila, J.A.; Astiazarán-García, H.; Montiel-Herrera, M.; González-Aguilar, G.A. Neuroprotective effects of mango cv. ‘Ataulfo’ peel and pulp against oxidative stress in streptozotocin-induced diabetic rats. J. Sci. Food Agr. 2021, 101, 497–504. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Astiazaran-Garcia, H.; Wall-Medrano, A.; de la Rosa, L.A.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Mango phenolics increase the serum apolipoprotein A1/B ratio in rats fed high cholesterol and sodium cholate diets. J. Sci. Food Agr. 2019, 99, 1604–1612. [Google Scholar] [CrossRef]
- Belmonte-Herrera, B.H.; Domínguez-Avila, J.A.; Ayala-Zavala, J.F.; Valenzuela-Melendres, M.; Tortoledo-Ortiz, O.; González-Aguilar, G.A. Optimization and In Vitro Digestion of a Guava (Psidium guajava), Mamey (Pouteria sapota) and Stevia (Stevia rebaudiana) Functional Beverage. Foods 2024, 13, 142. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free-Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Li, Z.Z.; Liu, Y.X.; Xiang, J.L.; Wang, C.Q.; Johnson, J.B.; Beta, T. Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. LWT-Food Sci. Technol. 2023, 173, 114308. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol. 1999, 299, 15–27. [Google Scholar]
- Medina, M.B. Simple and Rapid Method for the Analysis of Phenolic Compounds in Beverages and Grains. J. Agric. Food Chem. 2011, 59, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Robles-Sánchez, R.M.; Rojas-Graü, M.A.; Odriozola-Serrano, I.; González-Aguilar, G.A.; Martín-Belloso, O. Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biol. Technol. 2009, 51, 384–390. [Google Scholar] [CrossRef]
- Yeum, K.J.; Booth, S.L.; Sadowski, J.A.; Liu, C.; Tang, G.W.; Krinsky, N.I.; Russell, R.M. Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. Am. J. Clin. Nutr. 1996, 64, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G.W., Jr. AOAC International Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Campolier, M.; Thondre, S.P.; Clegg, M.; Shafat, A.; Mcintosh, A.; Lightowler, H. Changes in PYY and gastric emptying across the phases of the menstrual cycle and the influence of the ovarian hormones. Appetite 2016, 107, 106–115. [Google Scholar] [CrossRef]
- Zanzer, Y.C.; Plaza, M.; Dougkas, A.; Turner, C.; Björck, I.; Östman, E. Polyphenol-rich spice-based beverages modulated postprandial early glycaemia, appetite and PYY after breakfast challenge in healthy subjects: A randomized, single blind, crossover study. J. Funct. Foods 2017, 35, 574–583. [Google Scholar] [CrossRef]
- Kristensen, M.; Savorani, F.; Christensen, S.; Engelsen, S.B.; Bügel, S.; Toubro, S.; Tetens, I.; Astrup, A. Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr. Metab. Cardiovas. Dis. 2013, 23, 136–143. [Google Scholar] [CrossRef]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit. Rev. Food Sci. 2024, 64, 3139–3150. [Google Scholar] [CrossRef] [PubMed]
- Murillo, E.; Agócs, A.; Nagy, V.; Király, S.B.; Kurtán, T.; Toribio, E.M.; Lakey-Beitia, J.; Deli, J. Isolation and identification of sapotexanthin 5,6-epoxide and 5,8-epoxide from red mamey (Pouteria sapota). Chirality 2020, 32, 579–587. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Matamoros, C.; Hao, F.; Tian, Y.; Patterson, A.D.; Harvatine, K.J. Interaction of sodium acetate supplementation and dietary fiber level on feeding behavior, digestibility, milk synthesis, and plasma metabolites. J. Dairy Sci. 2022, 105, 8824–8838. [Google Scholar] [CrossRef] [PubMed]
- Lyly, M.; Liukkonen, K.H.; Salmenkallio-Marttila, M.; Karhunen, L.; Poutanen, K.; Lähteenmäki, L. Fibre in beverages can enhance perceived satiety. Eur. J. Nutr. 2009, 48, 251–258. [Google Scholar] [CrossRef]
- Paquet, É.; Bédard, A.; Lemieux, S.; Turgeon, S.L. Effects of apple juice-based beverages enriched with dietary fibres and xanthan gum on the glycemic response and appetite sensations in healthy men. Bioact. Carbohydr. Diet. Fibre 2014, 4, 39–47. [Google Scholar] [CrossRef]
- Bajerska, J.; Mildner-Szkudlarz, S.; Górnas, P.; Seglina, D. The effects of muffins enriched with sour cherry pomace on acceptability, glycemic response, satiety and energy intake: A randomized crossover trial. J. Sci. Food Agr. 2016, 96, 2486–2493. [Google Scholar] [CrossRef]
- Panda, V.; Shinde, P. Appetite suppressing effect of Spinacea oleracea in rats: Involvement of the short term satiety signal cholecystokinin. Appetite 2017, 113, 224–230. [Google Scholar] [CrossRef]
- Bakuradze, T.; Parra, G.A.M.; Riedel, A.; Somoza, V.; Lang, R.; Dieminger, N.; Hofmann, T.; Winkler, S.; Hassmann, U.; Marko, D.; et al. Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res. Int. 2014, 63, 420–427. [Google Scholar] [CrossRef]
- Benelam, B. Satiation, satiety and their effects on eating behaviour. Nutr. Bull. 2009, 34, 126–173. [Google Scholar] [CrossRef]
- Chow, J.; Choe, Y.S.; Noss, M.J.; Robinson, K.J.; Dugle, J.E.; Acosta, S.H.; Garleb, K.A. Effect of a viscous fiber-containing nutrition bar on satiety of patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2007, 76, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Delargy, H.J.; OSullivan, K.R.; Fletcher, R.J.; Blundell, J.E. Effects of amount and type of dietary fibre (soluble and insoluble) on short-term control of appetite. Int. J. Food Sci. Nutr. 1997, 48, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.S.; Loftus, T.M.; Mandrup, S.; Lane, M.D. Adipocyte differentiation and leptin expression. Annu. Rev. Cell Dev. Biol. 1997, 13, 231–259. [Google Scholar] [CrossRef]
- Picó, C.; Palou, M.; Pomar, C.A.; Rodríguez, A.M.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Dis. 2022, 23, 13–30. [Google Scholar] [CrossRef]
Variable | Control | Guava and Mamey |
---|---|---|
Total fiber (g/100 g dw) | 2.88 ± 0.18 b | 9.17 ± 0.61 a |
Vitamin C (mg/100 mL) | 5.71 ± 0.00 b | 10.12 ± 0.00 a |
TPC (mg GAE/100 mL) | 94.90 ± 1.73 a | 16.05 ± 0.57 b |
α-carotene (mg/100 g dw) | 11.13 ± 0.07 b | 356.94 ± 25.56 a |
β-carotene (mg/100 g dw) | 1.46 ± 0.31 b | 433.31 ± 8.45 a |
DPPH (mg TEs/100 mL) | 109.70 ± 1.39 a | 77.77 ± 0.58 b |
ABTS (mg TEs/100 mL) | 3.31 ± 0.02 a | 1.62 ± 0.01 b |
FRAP (mg TEs/100 mL) | 157.38 ± 0.38 a | 54.67 ± 0.38 b |
Variable | Women (n = 9) | Men (n = 9) |
---|---|---|
Age (y) | 26.11 ± 1.36 a | 26.88 ± 1.83 a |
Weight (kg) | 61.92 ± 4.06 b | 78.62 ± 4.98 a |
BMI (kg/m2) | 23.65 ± 1.19 a | 24.18 ± 0.93 a |
BF (%) | 37.74 ± 5.18 a | 27.11 ± 4.90 b |
MM (%) | 24.14 ± 5.15 b | 34.74 ± 3.95 a |
Control Beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | 0.270 (0.278) | 0.531 (0.023) | −0.034 (0.895) | −0.782 (0.000) | 0.743 (0.000) |
AUC satiety | 0.477 (0.045) | 0.169 (0.501) | −0.244 (0.329) | −0.616 (0.006) | 0.488 (0.040) |
AUC fullness | −0.029 (0.911) | 0.006 (0.982) | −0.128 (0.624) | −0.237 (0.359) | 0.191 (0.462) |
AUC PFC | 0.007 (0.979) | 0.331 (0.180) | −0.029 (0.908) | −0.437 (0.070) | 0.441 (0.067) |
Guava and mamey beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | 0.001 (0.998) | 0.062 (0.806) | −0.131 (0.605) | −0.201 (0.424) | 0.060 (0.813) |
AUC satiety | 0.506 (0.032) | 0.105 (0.677) | −0.183 (0.467) | −0.450 (0.061) | 0.406 (0.095) |
AUC fullness | 0.117 (0.644) | 0.162 (0.519) | −0.149 (0.554) | −0.424 (0.079) | 0.439 (0.068) |
AUC PFC | −0.033 (0.897) | 0.216 (0.389) | 0.016 (0.950) | −0.095 (0.708) | −0.005 (0.985) |
Control Beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | 0.473 (0.198) | −0.117 (0.764) | −0.371 (0.326) | −0.754 (0.019) | 0.609 (0.082) |
AUC satiety | 0.838 (0.005) | −0.291 (0.448) | −0.069 (0.860) | −0.270 (0.482) | 0.274 (0.476) |
AUC fullness | −0.202 (0.602) | −0.033 (0.933) | 0.475 (0.196) | 0.541 (0.132) | −0.376 (0.319) |
AUC PFC | 0.275 (0.474) | −0.123 (0.753) | −0.264 (0.492) | −0.712 (0.031) | 0.483 (0.188) |
Guava and mamey beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | 0.306 (0.423) | −0.245 (0.525) | −0.066 (0.867) | −0.445 (0.230) | 0.207 (0.592) |
AUC satiety | 0.660 (0.053) | −0.286 (0.456) | −0.110 (0.777) | −0.113 (0.773) | −0.002 (0.995) |
AUC fullness | −0.132 (0.735) | −0.042 (0.914) | 0.097 (0.803) | 0.514 (0.157) | −0.364 (0.335) |
AUC PFC | 0.244 (0.527) | −0.102 (0.793) | 0.232 (0.548) | −0.424 (0.255) | 0.220 (0.570) |
Control Beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | −0.401 (0.285) | −0.083 (0.831) | −0.175 (0.653) | −0.421 (0.259) | 0.447 (0.227) |
AUC satiety | 0.024 (0.951) | −0.564 (0.113) | −0.582 (0.100) | −0.729 (0.026) | 0.348 (0.360) |
AUC fullness | 0.053 (0.900) | −0.354 (0.389) | −0.466 (0.245) | −0.739 (0.036) | 0.445 (0.270) |
AUC PFC | −0.391 (0.298) | 0.181 (0.640) | −0.069 (0.859) | −0.053 (0.892) | 0.204 (0.598) |
Guava and mamey beverage | |||||
Age (years) | Weight (kg) | BMI (kg/m2) | Body fat (%) | Muscle mass (%) | |
AUC hunger | −0.585 (0.098) | −0.203 (0.600) | −0.301 (0.431) | 0.275 (0.474) | −0.434 (0.243) |
AUC satiety | 0.290 (0.449) | −0.179 (0.646) | −0.359 (0.343) | −0.681 (0.043) | 0.609 (0.082) |
AUC fullness | 0.204 (0.599) | −0.347 (0.361) | −0.400 (0.286) | −0.823 (0.006) | 0.697 (0.037) |
AUC PFC | −0.403 (0.282) | 0.064 (0.871) | −0.190 (0.625) | 0.475 (0.196) | −0.581 (0.101) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmonte-Herrera, B.H.; Domínguez-Avila, J.A.; Ayala-Zavala, J.F.; Wall-Medrano, A.; Montiel-Herrera, M.; González-Aguilar, G.A. A Freshly Prepared Guava and Mamey Beverage Induces Subjective Satiety in Healthy Adults, Similar to a Commercial Control. Beverages 2025, 11, 35. https://doi.org/10.3390/beverages11020035
Belmonte-Herrera BH, Domínguez-Avila JA, Ayala-Zavala JF, Wall-Medrano A, Montiel-Herrera M, González-Aguilar GA. A Freshly Prepared Guava and Mamey Beverage Induces Subjective Satiety in Healthy Adults, Similar to a Commercial Control. Beverages. 2025; 11(2):35. https://doi.org/10.3390/beverages11020035
Chicago/Turabian StyleBelmonte-Herrera, Beatriz Haydee, J. Abraham Domínguez-Avila, Jesús Fernando Ayala-Zavala, Abraham Wall-Medrano, Marcelino Montiel-Herrera, and Gustavo A. González-Aguilar. 2025. "A Freshly Prepared Guava and Mamey Beverage Induces Subjective Satiety in Healthy Adults, Similar to a Commercial Control" Beverages 11, no. 2: 35. https://doi.org/10.3390/beverages11020035
APA StyleBelmonte-Herrera, B. H., Domínguez-Avila, J. A., Ayala-Zavala, J. F., Wall-Medrano, A., Montiel-Herrera, M., & González-Aguilar, G. A. (2025). A Freshly Prepared Guava and Mamey Beverage Induces Subjective Satiety in Healthy Adults, Similar to a Commercial Control. Beverages, 11(2), 35. https://doi.org/10.3390/beverages11020035