Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health
Abstract
:1. Introduction
- (1)
- Dairy beverages (e.g., fermented milk, enriched yogurt with probiotics, functional milk fortified with extra calcium, omega-3, vitamins, etc.)
- (2)
- Non-dairy beverages (e.g., fruit and vegetable-based beverages fortified with vitamins and omega-3 unsaturated fatty acids, ready-to-drink teas, fortified bottled water, dairy substitutes, energy, isotonic, hypertonic, and hypotonic drinks referred to as functional waters) [7].
2. Dairy-Based Beverages
- (i)
- Dairy-based;
- (ii)
- Fruit-juice-based; and
- (iii)
- Thirst-quenching type.
2.1. Liquid Yogurt, Buttermilk, and Other Functional Dairy Beverages
2.2. Fruit-Juice-Based
2.3. Thirst-Quenching-Type Beverages
3. Functional Milk and Juices
3.1. Functional Milk: The Case of Kefir
3.2. Functional Fruit and Fortified Juices
4. Functional Waters
4.1. Sports Drinks
4.2. Energy Drinks
4.3. Herbal Drinks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayabalan, R.; Viduranga, Y.W. Kombucha as a Functional Beverage. Funct. Med. Beverages 2019, 11, 413–446. [Google Scholar]
- Gayathry, K.S.; Jenny, A.J. Functional beverages: Special focus on anti-diabetic potential. J. Food Process. Preserv. 2021, 45, e15974. [Google Scholar]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Díaz, L.D.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Information for Parents on Caffeine in Energy Drinks. Health Canada. 1 October 2011. Available online: https://www.canada.ca/ (accessed on 10 February 2025).
- Dini, I. An Overview of Functional Beverages. Funct. Med. Beverages 2019, 11, 1–40. [Google Scholar]
- Koji, N. Prevention of infections by probiotics. J. Biosci. Bioeng. 2005, 100, 583–592. [Google Scholar] [CrossRef]
- Fergus, S. Probiotics in inflammatory bowel disease—Therapeutic rationale and role. Adv. Drug Deliv. Rev. 2004, 56, 809–818. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Fergus, S. Probiotics and inflammatory bowel disease: From fads and fantasy to facts and future. Br. J. Nutr. 2002, 88, s5–s9. [Google Scholar] [CrossRef]
- Madden, J.A.J.; Hunter, J.O. A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics. Br. J. Nutr. 2002, 88, s67–s72. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.H.; Miller, J.; Whiteley, S.; James, L.J. A Sodium Drink Enhances Fluid Retention During 3 Hours of Post-Exercise Recovery When Ingested with a Standard Meal. J. Hum. Kinet. 2017, 27, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Orrù, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018, 10, 1470. [Google Scholar] [CrossRef]
- Sloan, A.E. The Top Ten Functional Food Trends. Food Technol. 2000, 54, 33–62. [Google Scholar]
- Shori, A.B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Ibrahim, M.A. Carbonated Beverages. Trends Non-Alcohol. Beverages 2020, 1, 1–36. [Google Scholar] [CrossRef]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. Compr. Rev. Food Sci. Food Saf. 2006, 5, 35–47. [Google Scholar] [CrossRef]
- Ward, O.P.; Singh, A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 2005, 40, 3627–3652. [Google Scholar] [CrossRef]
- Kolanowski, W.; Laufenberg, G. Enrichment of food products with polyunsaturated fatty acids by fish oil addition. Eur. Food Res. Technol. 2006, 222, 472–477. [Google Scholar] [CrossRef]
- Horrocks, L.A.; Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560S–569S. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, M.J.A.; Millington, K.J. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. J. Hum. Nutr. Diet. 2004, 17, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.L.; Duncan, S.E.; Rasor, A.S.; Eigel, W.N.; O’Keefe, S.F. Oxidative stability of an extended shelf-life dairy-based beverage system designed to contribute to heart health. J. Dairy Sci. 2012, 95, 6242–6251. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Radha, C.; Prakash, J.; Kaul, P. Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chem. 2007, 101, 1484–1491. [Google Scholar] [CrossRef]
- Makinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Ghasempour, Z.; Alizadeh, M.; Bari, M.R. Optimization of probiotic yoghurt production containing Zedo gum. Int. J. Dairy Technol. 2012, 65, 118–125. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Development of functional buttermilk by soluble fibre fortification. Agro. Food Ind. Hi Technol. 2016, 27, 44–47. [Google Scholar]
- Mudgil, D.; Barak, S.; Darji, P. Development and characterization of functional cultured buttermilk utilizing Aloe vera juice. Food Biosci. 2016, 15, 105–109. [Google Scholar] [CrossRef]
- Shree, K.D.; Deshpande, H.W.; Bhate, M.A. Studies on exploration of psyllium husk as prebiotic for the preparation of traditional fermented food “buttermilk”. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 3850–3863. [Google Scholar] [CrossRef]
- Ozer, B.H.; Kirmaci, H.A. Functional milks and dairy beverages. Int. J. Dairy Technol. 2010, 63, 1–15. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3711–3718. [Google Scholar] [CrossRef] [PubMed]
- Smithers, G.W. Whey-ing up the options—Yesterday, today and tomorrow. Int. Dairy J. 2015, 48, 2–14. [Google Scholar] [CrossRef]
- Jelen, P. Whipping studies with partially delactosed cheese whey. J. Dairy Sci. 1973, 56, 1505–1511. [Google Scholar] [CrossRef]
- Arthur, C.O.; Seppo, S.; Isolauri, E. Probiotics: An overview of beneficial effects. In Lactic Acid Bacteria: Genetics, Metabolism and Applications; Springer: Berlin/Heidelberg, Germany, 2002; Volume 82, pp. 279–289. [Google Scholar] [CrossRef]
- Wang, L.; Guo, M.J.; Gao, Q.; Yang, J.F.; Yang, L.; Pang, X.L.; Jiang, X.J. The effects of probiotics on total cholesterol. A meta-analysis of randomized controlled trials. Medicine 2018, 97, e9679. [Google Scholar] [CrossRef]
- Ahn, S.I.; Kim, M.S.; Park, D.G.; Han, B.K.; Kim, Y.J. Effects of probiotics administration on lactose intolerance in adulthood: A meta-analysis. J. Dairy Sci. 2023, 106, 4489–4501. [Google Scholar] [CrossRef]
- Bruno-Barcena, J.M.; Azcarate-Peril, M.A. Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. J. Funct. Foods 2015, 12, 92–108. [Google Scholar] [CrossRef]
- Godhia, M.L.; Patel, N. Colostrum—Its Composition, Benefits as a Nutraceutical—A Review. Curr. Res. Nutr. Food. Sci. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R.; et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother. Res. 2022, 36, 299–322. [Google Scholar] [CrossRef]
- Ostlund, R.E., Jr. Phytosterols and cholesterol metabolism. Curr. Opin. Lipidol. 2004, 15, 37–41. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; OKeefe, J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Heart 2019, 6, e001011. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- von Schacky, C.; Harris, W.S. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc. Res. 2007, 73, 310–315. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Kris-Etherton, P.M.; Harris, W.S.; Vanden Heuvel, J.P.; Wagner, P.R.; West, S.G. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am. J. Clin. Nutr. 2010, 93, 243–252. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Jabeen, A.; Muhammad Anjum, F.; Qaisrani, T.B.; Suleria, H.A.R. Fiber-enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci. Nutr. 2022, 10, 3203–3218. [Google Scholar] [CrossRef] [PubMed]
- Hullings, A.G.; Sinha, R.; Liao, L.M.; Freedman, N.D.; Graubard, B.I.; Loftfield, E. Whole grain and dietary fiber intake and risk of colorectal cancer in the NIH-AARP Diet and Health Study cohort. Am. J. Clin. Nutrit. 2020, 112, 603–612. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grübler, M.R.; Tomaschitz, A.; März, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 13, 404–417. [Google Scholar] [CrossRef]
- Glorieux, C.; Buc Calderon, P. Targeting catalase in cancer. Redox Biol. 2024, 77, 103404. [Google Scholar] [CrossRef]
- Hewitt, O.H.; Degnan, S.M. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci. Rep. 2023, 13, 2510. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E. Glutathione-Dependent Pathways in Cancer Cells. Int. J. Mol. Sci. 2024, 25, 8423. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, R.V.; Patel, S.G.; Guthikonda, A.P.; Reid, M.; Balasubramanyam, A.; Taffet, G.E.; Jahoor, F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 2011, 94, 847–853. [Google Scholar] [CrossRef]
- Mazzetti, A.P.; Fiorile, M.C.; Primavera, A.; Lo Bello, M. Glutathione transferases and neurodegenerative diseases. Neurochem. Int. 2015, 82, 10–18. [Google Scholar] [CrossRef]
- Glasauer, A.; Sena, L.A.; Diebold, L.P.; Mazar, A.P.; Chandel, N.S. Targeting SOD1 reduces experimental non–small-cell lung cancer. J. Clin. Investig. 2014, 124, 117–128. [Google Scholar] [CrossRef]
- Tsang, C.K.; Liu, Y.; Thomas, J.; Zhang, Y.; Zheng, X.F. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 2014, 5, 3446. [Google Scholar] [CrossRef]
- Pong, K. Oxidative stress in neurodegenerative diseases: Therapeutic implications for superoxide dismutase mimetics. Expert. Opin. Biol. Ther. 2003, 3, 127–139. [Google Scholar] [CrossRef]
- Carillon, J.; Rouanet, J.M.; Cristol, J.P.; Brion, R. Superoxide Dismutase Administration, A Potential Therapy Against Oxidative Stress Related Diseases: Several Routes of Supplementation and Proposal of an Original Mechanism of Action. Pharm. Res. 2013, 30, 2718–2728. [Google Scholar] [CrossRef]
- Krall, E.A.; Wehler, C.; Garcia, R.I.; Harris, S.S.; Dawson-Hughes, B. Calcium and vitamin D supplements reduce tooth loss in the elderly. Am. J. Med. 2001, 111, 452–456. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Lowe, N.M.; Fraser, W.D.; Jackson, M.J. Is there a potential therapeutic value of copper and zinc for osteoporosis? Proc. Nutr. Soc. 2002, 61, 181–485. [Google Scholar] [CrossRef] [PubMed]
- Rock, E.; Mazur, A.; O’connor, J.M.; Bonham, M.P.; Rayssiguier, Y.; Strain, J.J. The effect of copper supplementation on red blood cell oxidizability and plasma antioxidants in middle-aged healthy volunteers. Free Radic. Biol. Med. 2000, 28, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Elstrott, B.; Khan, L.; Olson, S.; Raghunathan, V.; DeLoughery, T.; Shatzel, J.J. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur. J. Haematol. 2019, 104, 153–161. [Google Scholar] [CrossRef]
- Teh, M.R.; Armitage, A.E.; Drakesmith, H. Why cells need iron: A compendium of iron utilization. Trends Endocrinol. Metab. 2024, 35, 1026–1049. [Google Scholar] [CrossRef]
- Faryadi, Q. The Magnificent Effect of Magnesium to Human Health: A Critical Review. Int. J. Appl. Sci. Technol. 2012, 2, 119–126. [Google Scholar]
- Fatima, G.; Dzupina, A.B.; Alhmadi, H.; Magomedova, A.; Siddiqui, Z.; Mehdi, A.; Hadi, N. Magnesium Matters: A Comprehensive Review of Its Vital Role in Health and Diseases. Cureus 2024, 16, e71392. [Google Scholar] [CrossRef]
- Amighi, J.; Sabeti, S.; Schlager, O.; Mlekusch, W.; Exner, M.; Lalouschek, W.; Ahmadi, R.; Minar, E.; Schillinger, M. Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke 2004, 35, 22–27. [Google Scholar] [CrossRef]
- Hreha, J.; Wey, A.; Cunningham, C.; Krell, E.S.; Brietbart, E.A.; Paglia, D.N.; Montemurro, N.J.; Nguyen, D.A.; Lee, Y.J.; Komlos, D.; et al. Local manganese chloride treatment accelerates fracture healing in a rat model. J. Orthop. Res. 2015, 33, 122–130. [Google Scholar] [CrossRef]
- Kimball, S.R.; Chen, S.J.; Risica, R.; Jefferson, L.S.; Leure-duPree, A.E. Effects of zinc deficiency on protein synthesis and expression of specific mRNAs in rat liver. Metabolism 1995, 44, 126–133. [Google Scholar] [CrossRef]
- Dreosti, I.E. Zinc and the gene. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2001, 475, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef]
- Sajovic, J.; Meglič, A.; Glavač, D.; Markelj, Š.; Hawlina, M.; Fakin, A. The Role of Vitamin A in Retinal Diseases. Int. J. Mol. Sci. 2022, 23, 1014. [Google Scholar] [CrossRef]
- Villamor, E.; Fawzi, W.W. Effects of Vitamin A Supplementation on Immune Responses and Correlation with Clinical Outcomes. Clin. Microbiol. Rev. 2005, 18, 446–464. [Google Scholar] [CrossRef]
- Gürbüz, M.; Aktaç, S. Understanding the role of vitamin A and its precursors in the immune system. Nutr. Clin. Metab. 2022, 36, 89–98. [Google Scholar] [CrossRef]
- Shastak, Y.; Pelletier, W. The role of vitamin A in non-ruminant immunology. Front. Anim. Sci. 2023, 4, 1197802. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef]
- Amimo, J.O.; Michael, H.; Chepngeno, J.; Raev, S.A.; Saif, L.J.; Vlasova, A.N. Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022, 14, 5038. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Haskell, M.J.; Raqib, R.; Stephensen, C.B. Markers of Innate Immune Function Are Associated with Vitamin A Stores in Men. J. Nutr. 2009, 139, 377–385. [Google Scholar] [CrossRef] [PubMed]
- García, O.P. Effect of vitamin A deficiency on the immune response in obesity. Proc. Nutr. Soc. 2012, 71, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef]
- Arora, S.; Prabha, K.; Sharanagat, V.S.; Mishra, V. Consumer awareness and willingness to purchase probiotic food and beverage products: A study of Sonipat district, Haryana. Br. Food J. 2020, 123, 2805–2817. [Google Scholar] [CrossRef]
- Kvakova, M.; Bertkova, I.; Stofilova, J.; Savidge, T.C. Co-encapsulated synbiotics and immobilized probiotics in human health and gut Microbiota modulation. Foods 2021, 10, 1297. [Google Scholar] [CrossRef]
- García-Burgos, M.; Moreno-Fernández, J.; Alférez, M.J.; Díaz-Castro, J.; López-Aliaga, I. New perspectives in fermented dairy products and their health relevance. J. Funct. Foods 2020, 72, 104059. [Google Scholar] [CrossRef]
- Tremblay, A.; Fatani, A.; Ford, A.L.; Piano, A.; Nagulesapillai, V.; Auger, J.; MacPherson, C.W.; Christman, M.C.; Tompkins, T.A.; Dahl, W.J. Safety and effect of a low-and high-dose multi-strain probiotic supplement on microbiota in a general adult population: A randomized, double-blind, placebo-controlled study. J. Diet. Suppl. 2021, 18, 227–247. [Google Scholar] [CrossRef]
- Gulitz, A.; Stadie, J.; Wenning, M.; Ehrmann, M.A.; Vogel, R.F. The microbial diversity of water kefir. Int. J. Food Microbiol. 2011, 151, 284–288. [Google Scholar] [CrossRef]
- Laureys, D.; De Vuyst, L. Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl. Env. Microbiol. 2014, 80, 2564–2572. [Google Scholar] [CrossRef]
- Boonyarattanakalin, S.; Sarikkha, P.; Nitisoravut, R.; Poljungreed, I. Identification of bacteria and yeast communities in Thai sugary kefir by polymerase chain reaction-denaturing gradient gel electrophoresis. J. Ind. Technol. 2015, 11, 25–39. [Google Scholar]
- Micheli, L.; Uccelletti, D.; Palleschi, C.; Crescenzi, V. Isolation and characterization of a ropy lactobacillus strain producing the exopolysaccharide quefiran. Appl. Microbiol. Biotechnol. 1999, 53, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Witthuhn, R.C.; Schoeman, T.; Britz, T.J. Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int. Dairy J. 2005, 15, 383–389. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Kok-Tas, T.; Greene, A.K.; Seydim, A.C. Review: Functional properties of kefir. Crit. Rev. Food Sci. Nutr. 2011, 51, 261–268. [Google Scholar] [CrossRef]
- Angulo, L.; Lopez, E.; Lema, C. Microflora present in kefir grains of the Galician region (north-west of Spain). J. Dairy Res. 1993, 60, 263–267. [Google Scholar] [CrossRef]
- Lin, C.W.; Chen, C.L.; Liu, J.R. Identification and characterisation of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust. J. Dairy Technol. 1999, 54, 14–18. [Google Scholar]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.; Vandenberghe, L.P.; Soccol, C.R. Microbiological, biochemical, and functional aspects of sugary kefir fermentation—A review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Kesenkas, H.; Dinkçi, N.; Seçkin, K.; Kinik, O.; Gönç, S. Antioxidant properties of kefir produced from different cow and soy milk mixtures. J. Agric. Sci. 2011, 17, 253–259. [Google Scholar] [CrossRef]
- Liu, J.R.; Chen, M.J.; Lin, C.W. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 2005, 53, 2467–2474. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Şahin, S. The antioxidative capacity of kefir produced from goat milk. Int. J. Chem. Eng. Appl. 2016, 7, 22–26. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, J.; Yang, X.; Nan, B.; Liu, Y.; Wang, Z. Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int. Dairy J. 2015, 43, 15–21. [Google Scholar] [CrossRef]
- Grishina, A.; Kulikova, I.; Alieva, L.; Dodson, A.; Rowland, I.; Jin, J. Antigenotoxic effect of kefir and ayran supernatants on fecal water-induced DNA damage in human colon cells. Nutr. Cancer. 2011, 63, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Antimicrobial properties of traditional kefir: An in vitro screening for antagonistic effect on Salmonella Typhimurium and Salmonella Arizonae. Int. Dairy J. 2022, 124, 105180. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Kim, H.; Kang, I.B.; Chon, J.W.; Song, K.Y.; Seo, K.H. Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean J. Food Sci. Anim. Resour. 2016, 36, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Golowczyc, M.A.; Silva, J.; Teixeira, P.; De Antoni, G.L.; Abraham, A.G. Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties. Int. J. Food Microbiol. 2011, 144, 556–560. [Google Scholar] [CrossRef]
- Bolla, P.A.; Carasi, P.; Serradell Mde, L.; De Antoni, G.L. Kefir-isolated Lactococcus lactis subsp. lactis inhibits the cytotoxic effect of Clostridium difficile in vitro. J. Dairy Res. 2013, 80, 96–102. [Google Scholar] [CrossRef]
- Carasi, P.; Trejo, F.M.; Pérez, P.F.; De Antoni, G.L.; de los Angeles Serradell, M. Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins. Anaerobe 2012, 18, 135–142. [Google Scholar] [CrossRef]
- Bolla, P.A.; Abraham, A.G.; Pérez, P.F.; de Los Angeles Serradell, M. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells. Benef. Microbes. 2016, 7, 103–110. [Google Scholar] [CrossRef]
- Pereira, M.F.A.; Albuini, F.M.; Peluzio, M.C.G. Anti-inflammatory pathways of kefir in murine model: A systematic review. Nutr. Rev. 2024, 82, 210–227. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, X.; Deng, B.; Liao, Z.; Fang, X.; Wang, J. Prevention of DSS-induced colitis in mice with water kefir microbiota via anti-inflammatory and microbiota-balancing activity. Food Funct. 2023, 14, 6813–6827. [Google Scholar] [CrossRef]
- Lai, Y.W.; Ko, C.H.; Chen, H.L.; Chen, C.M. Anti-Inflammatory effect and bone protection of kefir peptides in a rat model of adjuvant-induced rheumatoid arthritis. FASEB J. 2019, 33, lb133. [Google Scholar] [CrossRef]
- Ekici, O.; Aslan, E.; Aladag, T.; Guzel, H.; Koekmaz, O.A.; Bostanci, A.; Sadi, G.; Pektas, M.B. Masseter muscle and gingival tissue inflammatory response following treatment with high-fructose corn syrup in rats: Anti-inflammatory and antioxidant effects of kefir. J. Food Biochem. 2021, 46, e13732. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.S.; Regueira, M.L.; Ton, A.M.M.; Campagnaro, B.P.; Toimil, M.C.; Pereiraa, T.M.C.; Vasquez, E.C. Mechanisms of action of kefir in chronic cardiovascular and metabolic diseases. Cell Physiol. Biochem. 2018, 48, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, G.; Perdigón, G.; Duarte, J.; Farnworth, E.; Matar, C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006, 36, 254–260. [Google Scholar] [CrossRef]
- Vinderola, G.; Perdigon, G.; Duarte, J.; Thangavel, D.; Farnworth, E.; Matar, C. Effects of kefir fractions on innate immunity. Immunobiology 2006, 211, 149–156. [Google Scholar] [CrossRef]
- Hadisaputro, S.; Djokomoeljanto, R.R.J.; Soesatyo, M.H.N.E. The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia wistar rats induced by streptozotocin. Acta Med. Indones. 2012, 44, 100–104. [Google Scholar]
- Liao, C.H.; Yen, C.C.; Chen, H.L.; Liu, Y.H.; Chen, Y.H.; Lan, Y.W.; Chen, K.R.; Chen, W.; Chen, C.M. Novel kefir exopolysaccharides (KEPS) mitigate lipopolysaccharide (LPS)-induced systemic inflammation in luciferase transgenic mice through inhibition of the NF-κB pathway. Antioxidants 2023, 12, 1724. [Google Scholar] [CrossRef]
- da Silva, K.N.; Fávero, A.G.; Ribeiro, W.; Ferreira, C.M.; Sartorelli, P.; Cardili, L.; Bogsan, C.S.; Bertaglia Pereira, J.N.; de Cássia Sinigaglia, R.; de Moraes Malinverni, A.C.; et al. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2023, 9, e12707. [Google Scholar] [CrossRef]
- Chuang, K.C.; Lai, Y.W.; Ko, C.H.; Yen, C.C.; Chen, H.L.; Lan, Y.W.; Chen, C.F.; Chen, W.; Chen, C.M. Therapeutic effects of kefir peptides on adjuvant-induced arthritis in rats through anti-inflammation and downregulation of matrix metalloproteinases. Life Sci. 2023, 317, 121411. [Google Scholar] [CrossRef]
- Vieira, L.V.; Macedo de Sousa, L.; Maia, T.A.C.; Gusmão, J.N.F.M.; Goes, P.; Pereira, K.M.A.; Miyajima, F.; Gondim, D.V. Milk kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed. Pharmacother. 2021, 139, 111677. [Google Scholar] [CrossRef]
- Yener, A.U.; Sehitoglu, M.H.; Ozkan, M.T.; Bekler, A.; Ekin, A.; Cokkalender, O.; Deniz, M.; Sacar, M.; Karaca, T.; Ozcan, S.; et al. Effects of kefir on ischemia-reperfusion injury. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 887–896. [Google Scholar]
- Zamberi, N.R.; Abu, N.; Mohamed, N.E.; Nordin, N.; Keong, Y.S.; Beh, B.K.; Zakaria, Z.A.; Nik Abdul Rahman, N.M.; Alitheen, N.B. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr. Cancer Ther. 2016, 15, NP53–NP66. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Brasiel, P.G.; Luquetti, S.C.P.D.; Medeiros, J.D.; do Amaral Corrêa, J.O.; Machado, A.B.F.; Moreira, A.P.B.; Rocha, V.N.; de Souza, C.T.; do Carmo Gouveia Peluzio, M. Kefir modulates gut microbiota and reduces DMH-associated colorectal cancer via regulation of intestinal inflammation in adulthood offsprings programmed by neonatal overfeeding. Food Res. Int. 2022, 152, 110708. [Google Scholar] [CrossRef] [PubMed]
- Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J. Immunol. Res. 2015, 2015, 361604. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Duarte, J.; Thangavel, D.; Perdigon, G.; Matar, C.; Farnworth, E. Distal mucosal site stimulation by kefir and duration of the immune response. Eur. J. Inflamm. 2005, 3, 63–73. [Google Scholar] [CrossRef]
- Medrano, M.; Racedo, S.M.; Rolny, I.S.; Abraham, A.G.; Pérez, P.F. Oral administration of kefiran induces changes in the balance of immune cells in a murine model. J. Agric. Food Chem. 2011, 59, 5299–5304. [Google Scholar] [CrossRef]
- Senol, A.; Isler, M.; Sutcu, R.; Akin, M.; Cakir, E.; Ceyhan, B.M.; Kockar, M.C. Kefir treatment ameliorates dextran sulfate sodium-induced colitis in rats. World J. Gastroenterol. 2015, 21, 13020–13029. [Google Scholar] [CrossRef]
- Chen, Y.P.; Hsiao, P.J.; Hong, W.S.; Dai, T.Y.; Chen, M.J. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 2012, 95, 63–74. [Google Scholar] [CrossRef]
- Hong, W.S.; Chen, Y.P.; Chen, M.J. The antiallergic effect of kefir Lactobacilli. J. Food Sci. 2010, 75, H244–H253. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Ateeq, H.; Shah, Y.A.; Hussain, M.; Javed, A.; Ikram, A.; Raza, M.A.; Nayik, G.A.; Alfarraj, S.; et al. Effect of Cellulose–Chitosan Hybrid-Based Encapsulation on the Viability and Stability of Probiotics under Simulated Gastric Transit and in Kefir. Biomimetics 2022, 7, 109. [Google Scholar] [CrossRef]
- da Silva, M.N.; Tagliapietra, B.L.; do Amaral Flores, V.; dos Santos Richards, N.S.P. In Vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3100–3118. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef]
- Hu, B.; Guo, Y.; Li, H.; Liu, X.; Fu, Y.; Ding, F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr. Polym. 2021, 271, 118427. [Google Scholar] [CrossRef]
- Mbye, M.; Baig, M.A.; AbuQamar, S.F.; El-Tarabily, K.A.; Obaid, R.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Turner, M.S.; Shah, N.P.; Ayyash, M.M. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1110–1124. [Google Scholar] [CrossRef]
- Gholami, A.; Dabbaghmanesh, M.H.; Ghasemi, Y.; Talezadeh, P.; Koohpeyma, F.; Montazeri-Najafabady, N.P. Probiotics ameliorate pioglitazone-associated bone loss in diabetic rats. Diabetol. Metab. Syndr. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Hong, W.S.; Chen, Y.P.; Dai, T.Y.; Huang, I.N.; Chen, M.J. Effect of heat-inactivated kefir-isolated Lactobacillus kefiranofaciens M1 on preventing an allergic airway response in mice. J. Agric. Food Chem. 2011, 59, 9022–9031. [Google Scholar] [CrossRef]
- European Commision. Consumption of Fruit and Vegetables in the EU; EC—European Commision: Bruxelles, Belgium, 2016. [Google Scholar]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef]
- Cömert, E.D.; Gökmen, V. Evolution of food antioxidants as a core topic of food science for a century. Food Res. Int. 2018, 105, 76–93. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1580–1604. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J. The influence of addition of cranberrybush juice to pear juice on chemical composition and antioxidant properties. J. Food Sci. Technol. 2018, 55, 3399–3407. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Rodrigues, S. Turning Fruit Juice into Probiotic Beverages. Fruit. Juices 2018, 2018, 279–287. [Google Scholar] [CrossRef]
- Žuntar, I.; Petric, Z.; Bursać Kovačević, D.; Putnik, P. Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods 2020, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Cook, M.T.; Khutoryanskiy, V.V.; Charalampopoulos, D. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Res. Int. 2013, 53, 304–311. [Google Scholar] [CrossRef]
- Antunes, A.E.C.; Liserre, A.M.; Coelho, A.L.A.; Menezes, C.R.; Moreno, I.; Yotsuyanagi, K.; Azambuja, N.C. Acerola nectar with added microencapsulated probiotic. Food Sci. Technol. 2013, 54, 125–131. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef]
- Martins, E.M.F.; Ramos, A.M.; Vanzela, E.S.L.; Stringheta, P.C.; de Oliveira Pinto, C.L.; Martins, J.M. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Res. Int. 2013, 51, 764–770. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M.R. Challenges for the production of probiotic fruit juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef]
- Saarela, M.; Virkajarvi, I.; Nohynek, L.; Vaari, A.; Matto, J. Fibres as carries for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 2006, 112, 171–178. [Google Scholar] [CrossRef]
- Nag, A.; Das, S. Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. J. Funct. Foods 2013, 5, 170–177. [Google Scholar] [CrossRef]
- Tsen, J.H.; Lin, Y.P.; King, V.A.E. Fermentation of banana media by using κ-carrageenan immobilized Lactobacillus acidophilus. Int. J. Food Microbiol. 2004, 91, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.K.; Shah, N.P. Survival of free and microencapsulated probiotic bacteria in orange and apple juices. Int. Food Res. J. 2008, 15, 219–232. [Google Scholar]
- Rakin, M.; Vukasinovic, M.; Siler-Marinkovic, S.; Maksimovic, M. Contribution of lactic acid fermentation to improved nutritive quality vegetable juices enriched with brewer’s yeast autolysate. Food Chem. 2007, 100, 599–602. [Google Scholar] [CrossRef]
- Gaudreau, H.; Champagne, C.P.; Remondetto, G.E.; Bazinet, L.; Subirade, M. Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. Food Res. Int. 2013, 53, 751–757. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.-J.; Frutos, M.-J. Non-dairy fermented beverages as potential carriers to ensure probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Guarino, M.P.L.; Altomare, A.; Emerenziani, S.; Di Rosa, C.; Ribolsi, M.; Balestrieri, P.; Iovino, P.; Rocchi, G.; Cicala, M. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients 2020, 12, 1037. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Khangwal, I.; Shukla, P. Prospecting prebiotics, innovative evaluation methods, and their health applications: A review. 3 Biotech 2019, 9, 187. [Google Scholar] [CrossRef]
- Septembre-malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Pansai, N.; Chakree, K.; Takahashi Yupanqui, C.; Raungrut, P.; Yanyiam, N.; Wichienchot, S. Gut microbiota modulation and immune boosting properties of prebiotic dragon fruit oligosaccharides. Int. J. Food Sci. Technol. 2020, 55, 55–64. [Google Scholar] [CrossRef]
- Gupta, E.; Mishra, N.; Mishra, P.; Shiekh, A.; Gupta, K.; Singh, P. Fruit peels: A strong natural source of antioxidant and prebiotics. Carpathian J. Food Sci. Technol. 2020, 12, 134–143. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Brdar, D.; Fabečić, P.; Barba, F.J.; Lorenzo, J.M.; Putnik, P. Strategies to achieve a healthy and balanced diet: Fruits and vegetables as a natural source of bioactive compounds. Agri-Food Ind. Strateg. Healthy Diets Sustain. 2020, 1, 51–88. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Pandey, S. Juice Blends—A Way of Utilization of Under-Utilized Fruits, Vegetables, and Spices: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef]
- Šatalić, Z. Sports nutrition. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Heckman, M.; Sherry, K.; Mejia, D.; Gonzalez, E. Energy drinks: An assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the United States. Compr. Rev. Food Sci. Food Saf. 2010, 9, 303–317. [Google Scholar] [CrossRef]
- Urdampilleta, A.; Gómez-Zorita, S.; Soriano, J.M.; Martínez-Sanz, J.M.; Medina, S.; Gil-Izquierdo, A. Hydration and chemical ingredients in sport drinks: Food safety in the European context. Nutr. Hosp. 2015, 31, 1889–1899. [Google Scholar] [CrossRef]
- Higgins, J.P.; Tuttle, T.D.; Higgins, C.L. Energy beverages: Content and safety. Mayo Clin. Proc. 2010, 85, 1033–1041. [Google Scholar] [CrossRef]
- Campbell, B. Sports Nutrition: Enhancing Athletic Performance; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Larson, N.; DeWolfe, J.; Story, M.; Neumark-Sztainer, D. Adolescent consumption of sports and energy drinks: Linkages to higher physical activity, unhealthy beverage patterns, cigarette smoking, and screen media use. J. Nutr. Educ. Behav. 2014, 46, 181–187. [Google Scholar] [CrossRef]
- Gunja, N.; Brown, J.A. Energy drinks: Health risks and toxicity. Med. J. Aust. 2012, 196, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Dikici, S.; Saritas, A.; Kilinc, S.; Guneysu, S.; Gunes, H. Does an energy drink cause a transient ischemic attack? Am. J. Emerg. Med. 2015, 33, 129.e5-6. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Hankey, J. The effect of a caffeinated energy drink on various psychological measures during submaximal cycling. Physiol. Behav. 2013, 116-117, 60–65. [Google Scholar] [CrossRef]
- Zeidán-Chuliá, F.; Gelain, D.P.; Kolling, E.A.; Rybarczyk-Filho, J.L.; Ambrosi, P.; Terra, S.R.; Pires, A.S.; da Rocha, J.B.; Behr, G.A.; Moreira, J.C. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxidative Med. Cell. Longev. 2013, 2013, 791795. [Google Scholar] [CrossRef]
- Krahe, T.E.; Filgueiras, C.C.; da Silva Quaresma, R.; Schibuola, H.G.; Abreu-Villaça, Y.; Manhães, A.C.; Ribeiro-Carvalho, A. Energy drink enhances the behavioral effects of alcohol in adolescent mice. Neurosci. Lett. 2017, 651, 102–108. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Pennella, S.; Farinetti, A.; Manenti, A. Energy Drinks and atrial fibrillation in young adults. Clin. Nutr. 2017, 37, 1073–1074. [Google Scholar] [CrossRef]
- Azagba, S.; Langille, D.; Asbridge, M. An emerging adolescent health risk: Caffeinated energy drink consumption patterns among high school students. Prev. Med. 2014, 62, 54–59. [Google Scholar] [CrossRef]
- Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 1999, 70, 491–499. [Google Scholar] [CrossRef]
- Mckay, D.L.; Blumberg, J.B. The role of tea in human health: An update. J. Am. Coll. Nutr. 2002, 21, 1–13. [Google Scholar] [CrossRef]
- Wargovichi, M.J.; Woods, C.; Hollis, D.M.; Zander, M.E. Herbals, Cancer prevention and health. J. Nutr. 2001, 131, 3034–3036. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea-A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada. 2016. Available online: https://www.canada.ca/en/public-health.html (accessed on 25 February 2025).
- Chin, H.W.; Lin, C.C.; Tang, K.S. The hepatoprotective effects of Taiwan folk medicine ham-hong-chho in rats. Am. J. Chin. Med. 1996, 24, 231–240. [Google Scholar] [CrossRef]
- Singh, D.; Singh, P.; Gupta, A.; Solanki, S.; Sharma, E.; Nema, R. Qualitative estimation of the presence of bioactive compound in Centella Asiatica: An important medicinal plant. Inter. J. Life Sci. Med. Sci. 2012, 2, 5–7. [Google Scholar]
- Bonfill, M.; Mangas, S.; Cusido, R.M.; Osuna, L.; Pinol, M.T.; Palazon, J. Identification of triterpenoid compounds of Centella asiatica by thin–layer chromatography and mass spectrometry. Biomed. Chromatogr. 2005, 20, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Minto, R.E.; Blacklock, B.J. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 2008, 47, 233–306. [Google Scholar] [CrossRef]
- Govindan, G.; Sambandan, T.G.; Govindan, M.; Rha, C.K. A bioactive polyacetylene compound isolated from Centella asiatica. Planta Med. 2007, 73, 597–599. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Venkatesh, P. Inhibition of radiation-induced clastogenicity by Aegle marmelos (L.) correa in mice bone marrow exposed to different doses of gamma-radiation. Hum. Exp. Toxicol. 2007, 26, 111–124. [Google Scholar] [CrossRef]
- Shankarananth, V.; Balakrishnan, N.; Suresh, D.; Sureshpandian, G.; Edwin, E.; Sheeja, E. Analgesic activity of methanol extract of Aegle marmelos leaves. Fitoterapia 2007, 78, 258–259. [Google Scholar] [CrossRef]
- Narender, T.; Shweta, S.; Tiwari, P. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg. Med. Chem. Lett. 2007, 17, 1808–1811. [Google Scholar] [CrossRef]
- Costa-Lotufo, L.V.; Khan, M.T.; Ather, A. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J. Ethnopharmacol. 2005, 99, 21–30. [Google Scholar] [CrossRef]
- Subramaniam, D.; Giridharan, P.; Murmu, N. Activation of apoptosis by 1-hydroxy-5, 7-dimethoxy-2-naphthalene-carboxaldehyde, a novel compound from Aegle marmelos. Cancer Res. 2008, 68, 8573–8585. [Google Scholar] [CrossRef] [PubMed]
- Sabu, M.C.; Kuttan, R. Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. Indian. J. Physiol. Pharmacol. 2004, 2004, 81–88. [Google Scholar] [PubMed]
- Suvimol, C.; Pranee, A. Bioactive compounds and volatile compounds of Thai bael fruit (Aegle marmelos (L.) Correa) as a valuable source for functional food ingredients. Int. Food Res. 2008, 15, 45–63. [Google Scholar]
- Gohil, T.; Pathak, N.; Jivani, N.; Devmurari, V.; Patel, J. Treatment with extracts of Eugenia jambolana seed and Aegle marmelos leaf extracts prevents hyperglycemia and hyperlipidemia in alloxan induced diabetic rats. Afr. J. Pharm. Pharmacol. 2010, 4, 270–275. [Google Scholar]
- Maity, P.; Hansda, D.; Bandyopadhyay, U.; Mishra, D.K. Biological activities of crude extracts and chemical constituents of bael, Aegle Marmelos (L.). Corr. Indian J. Exp. Biol. 2009, 47, 849–861. [Google Scholar] [PubMed]
- Dhankhar, S.; Ruhil, S.; Balhara, M.; Dhankhar, S.; Chhillar, A.K. Aegle marmelos (Linn.) correa: A potential source of Phytomedicine. J. Med. Plants Res. 2011, 5, 1497–1507. [Google Scholar]
- Das, U.K.; Maiti, R.; Jana, D.; Ghosh, D. Effect of aqueous extract of leaf of Aegle marmelos on testicular activities in rats. IJPT 2006, 5, 21–25. [Google Scholar]
- Veerappan, A.; Miyazaki, S.; Kadarkaraisamy, M.; Ranganathan, D. Acute and subacute toxicity studies of Aegle marmelos Corr., an Indian medicinal plant. Phytomedicine 2007, 14, 209–215. [Google Scholar] [CrossRef]
- Latha, M.; Pari, L. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clin. Exp. Pharmacol. Physiol. 2003, 30, 38–43. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, S.B.; Bansal, S.K.; Prabhu, K.M. Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. J. Ethnopharmacol. 2009, 123, 499–503. [Google Scholar] [CrossRef]
- Abesundara, K.J.M.; Matsui, T.; Matsumoto, K. α-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong a Antihyperglycemic effect in rats comparable to the therapeutic drug Acarbose. J. Agric. Food Chem. 2004, 52, 2541–2545. [Google Scholar] [CrossRef] [PubMed]
- Latha, M.; Pari, L. Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation in rats treated with stretozocin. Mol. Cell. Biochem. 2003, 243, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Puranik, A.S.; Halade, G.; Kumar, S. Cassia auriculata: Aspects of safety pharmacology and drug interaction. J. Evid. Based Complement. Altern. Med. 2011, 2011, 915240. [Google Scholar] [CrossRef]
- Joubert, E.; Gelderblom, W.C.A.; Louw, A.; De Beer, D. South African herbal teas: Aspalathus linearis, yclopia spp. and Athrixia phylicoides—A review. J. Ethanopharmacol. 2008, 119, 376–412. [Google Scholar] [CrossRef]
- Cha, B.; Shi, W.L.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J. An inhibitory effect of chrysoeriol on platelet-derived growth factor (PDGF)-induced proliferation and PDGF receptor signaling in human aortic smooth muscle cells. J. Pharmacol. Sci. 2009, 110, 105–110. [Google Scholar] [CrossRef]
- Persson, I.A.; Persson, K.; Hägg, S.; Andersson, R.G.G. Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr. 2010, 3, 730–737. [Google Scholar] [CrossRef]
- Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef]
- Lobato, R.; Matsumoto, T.; Mendonça, S.; Moura de Oliveira, D.; Souza, M.F.; Markowicz Bastos, D.H. Effects of maté tea intake on ex vivo LDL peroxidation induced by three different pathways. Nutrients 2009, 1, 18–29. [Google Scholar] [CrossRef]
- VanderJagt, T.J.; Ghattas, R.; VanderJagt, D.J.; Crossey, M.; Glew, R.H. Comparison of the total antioxidant content of 30 widely used medicinal plants of New Mexico. Life Sci. 2002, 70, 1035–1040. [Google Scholar] [CrossRef]
- Bracesco, N.; Sanchez, A.G.; Contreras, V.; Menini, T.; Gugliucci, A. Recent advances on Ilex paraguariensis research: Minireview. J. Ethnopharmacol. 2011, 136, 378–384. [Google Scholar] [CrossRef]
- Gao, H.; Long, Y.; Jiang, X. Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Exp. Gerontol. 2013, 48, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Arcari, D.P.; Santos, J.C.; Gambero, A.; Ribeiro, M.L. The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis. Food Chem. 2013, 141, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Aloulou, A.; Hamden, K.; Elloumi, D. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC Complement. Altern. Med. 2012, 12, 63. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef]
- Babenko, N.A.; Shakhova, E.G. Effects of Chamomilla recutita flavonoids on age-related liver sphingolipid turnover in rats. Exp. Gerontol. 2006, 41, 32–39. [Google Scholar] [CrossRef]
- Lee, K.G.; Shibamoto, T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J. Agric. Food Chem. 2002, 50, 4947–4952. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Gupta, S. Health promoting benefits of chamomile in the elderly population. In Complementary and Alternative Therapies in the Aging Population; Watson, R., Ed.; Elsevier Inc.; Academic Press: Cambridge, MA, USA, 2009; pp. 135–158. [Google Scholar]
- Budzinski, J.W.; Foster, B.C.; Vandenhoek, S.; Arnason, J.T. An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 2000, 7, 273–282. [Google Scholar] [CrossRef]
- Bupesh, G.; Amutha, C.; Nandagopal, S.; Ganeshkumar, A.; Sureshkumar, P.; Murali, K.S. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts—A medicinal plant. Acta Agric. Slov. 2007, 89, 73–79. [Google Scholar]
- Sharafi, S.M.; Rasooli, I.; Owlia, P.; Taghizadeh, M.; Darvish, S.; Astaneh, A. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn. Mag. 2010, 6, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Gupta, R.; Saraf, S.A. Herbs-are they safe enough? An overview. Crit. Rev. Food Sci. Nutr. 2012, 52, 876–898. [Google Scholar] [CrossRef]
- Choi, Y.H.; Chin, Y.W.; Kim, Y.G. Herb-drug interactions: Focus on metabolic enzymes and transporters. Arch. Pharm. Res. 2011, 34, 1843–1863. [Google Scholar] [CrossRef] [PubMed]
- Schönthal, A.H. Adverse effects of concentrated green tea extracts. Mol. Nutr. Food Res. 2011, 55, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Colalto, C. Herbal interactions on absorption of drugs: Mechanisms of action and clinical risk assessment. Pharmacol. Res. 2010, 62, 207–227. [Google Scholar] [CrossRef] [PubMed]
Constituents | Beneficial Effect | References |
---|---|---|
Probiotics | Reduction of cholesterol levels; alleviation of lactose-intolerance symptoms; prevention of intestinal tract infections; prevention of diarrhea; prevention of colon cancer; improvement of the immune system. | [35,36,37] |
Ingredients of colostrum (lactoperoxidase, lactoferrin, and lysozyme) | Improvement of immunity; prevention of diarrhea, stomach cancer, and ulcers; protection against infections. | [39] |
Phytosterols (campesterol β-sitosterol, and stigmasterol) | Reduction in the absorption of cholesterol from the gut and low-density lipoprotein cholesterol levels; prevention of cardiovascular diseases. | [40] |
Omega-3 fatty acids (eicosapentaenoic acid, docosahexaenoic acid, and α linolenic acid) | Prevention of cardiovascular diseases; abnormal clotting of blood; reduction of triglyceride levels; regulation of the immune system; improvement of brain function. | [23,43,44,45,46] |
Soluble dietary fibers | Decrease of cholesterol levels and prevention of the increase of glucose levels. | [47] |
Insoluble dietary fibers | Prevention of constipation; faster removal of toxic waste through colon; prevention of colon cancer by prevention of cancerous substances producted by colon microorganisms. | [48,49] |
Antioxidants (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase) | Protective action against cancer, coronary heart disease, neurological disorders, and neurodegenerative diseases. Boosting of immune system and delay of aging. | [52,53,54,55,56,57,58,59,60,61] |
Calcium (Ca) | Maintenance of bones and teeth health. | [62] |
Iron (Fe) | Prevention of anemia; production of hormones and connective tissue. | [66,67] |
Copper (Cu) | Normal function of the heart and arteries; protection of red blood cells against oxidation and prevention of osteoporosis and osteoarthritis. | [63,64,65] |
Magnesium (Mg) | Synthesis of proteins; regulation of blood pressure and sugar levels in blood; normal function of muscle and nerves. | [68,69,70] |
Manganese (Mn) | Activation of enzymes for growth of bones and reproduction. | [71] |
Zinc (Zn) | Metabolism of cells; function of the immune system; protein synthesis; synthesis of DNA; and wound healing. | [64,72,73,74] |
Vitamin D | Metabolism and absorption of calcium; maintenance of bone growth; boosting of the immune system. | [62,75,76] |
Vitamin A | Normal function of vision; immune reactions; and gene transcription. | [77,78,79,80,81,82,83,84] |
Lactobacillus Species | Bifidobacterium Species | Others |
---|---|---|
Lactobacillus acidophilus | Bifidobacterium adolescentis | Bacillus coagulans |
Lactobacillus amylovorus | Bifidobacterium animalis | Bacillus cereus |
Lactobacillus brevis | Bifidobacterium breve | Clostridium botyricum |
Lactobacillus casei | Bifidobacterium bifidum | Enterococcus faecalis |
Lactobacillus rhamnosus | Bifidobacterium infantis | Enterococcus faecium |
Lactobacillus crispatus | Bifidobacterium lactis | Escherichia coli |
Lactobacillus delbrueckii subsp. Bulgaricus | Bifidobacterium longum | Lactococcus lactis subsp. Cremoris |
Lactobacillus fermentum | Lactococcus lactis subsp. Lactis | |
Lactobacillus gasseri | Leuconostoc mesenteroides subsp. Dextranicum | |
Lactobacillus helveticus | Pediococcus acidilactici | |
Lactobacillus johnsonii | Propionibacterium freudenreichii | |
Lactobacillus lactis | Saccharomyces boulardii | |
Lactobacillus paracasei | ||
Lactobacillus plantarum | ||
Lactobacillus reuteri | ||
Lactobacillus rhamnosus | ||
Lactobacillus salivarius | ||
Lactobacillus gallinarum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panou, A.; Karabagias, I.K. Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health. Beverages 2025, 11, 40. https://doi.org/10.3390/beverages11020040
Panou A, Karabagias IK. Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health. Beverages. 2025; 11(2):40. https://doi.org/10.3390/beverages11020040
Chicago/Turabian StylePanou, Andreas, and Ioannis Konstantinos Karabagias. 2025. "Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health" Beverages 11, no. 2: 40. https://doi.org/10.3390/beverages11020040
APA StylePanou, A., & Karabagias, I. K. (2025). Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health. Beverages, 11(2), 40. https://doi.org/10.3390/beverages11020040