Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines
Abstract
1. Introduction
2. Materials and Methods
2.1. Vineyard Location
2.2. Experiment
2.3. Winemaking Process
2.4. Physicochemical Profiling of Wine
2.5. Identification and Quantification of Volatile Compounds
2.6. Organic Acids Analysis
2.7. Odor Activity Values and Relative Odor Contributions Determinatins
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Composition
3.2. Aromatic Profile of Malvasija Dubrovačka Wines
3.3. Odour Active Values (OAV) and Relative Odour Contribution (ROC)
3.4. Principal Component Analysis
3.5. Sensory Analysis and Partial Least Square Regression of Malvasija Dubrovačka Wines
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2013, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, B.; Li, J.; Zhu, F.; Du, B.; Li, J. Aroma Compounds in Wine. In Grape and Wine Biotechnology; IntechOpen: London, UK, 2016; ISBN 978-953-51-2693-5. [Google Scholar]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Mattii, G.B. Effect of Agronomic Techniques on Aroma Composition of White Grapevines: A Review. Agronomy 2021, 11, 2027. [Google Scholar] [CrossRef]
- Polášková, P.; Herszage, J.; Ebeler, S.E. Wine Flavor: Chemistry in a Glass. Chem. Soc. Rev. 2008, 37, 2478–2489. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Šikuten, I.; Štambuk, P.; Andabaka, Ž.; Tomaz, I.; Marković, Z.; Stupić, D.; Maletić, E.; Kontić, J.K.; Preiner, D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020, 25, 5604. [Google Scholar] [CrossRef]
- Orešković, I. Malvasija—Glasovito Vino još iz Doba Dubrovačke Republike; Vinarska poljoprivredna zadruga Malvasija dubrovačka bijela: Pridvorje, Croatia; Alfa—2 d.o.o.: Dubrovnik, Croatia, 2010; ISBN 978-953-56445-0-7. [Google Scholar]
- Lacombe, T.; Boursiquot, J.M.; Laucou, V.; Dechesne, F.; Varès, D.; This, P. Relationships and Genetic Diversity within the Accessions Related to Malvasia Held in the Domaine de Vassal Grape Germplasm Repository. Am. J. Enol. Vitic. 2007, 58, 124–131. [Google Scholar] [CrossRef]
- Crespan, M.; Cabello, F.; Giannietto, S.; Ibáñez, J.; Karoglan Kontic, J.; Maletic, E.; Pejic, I.; Rodriguez-Torres, I.; Antonacci, D. Malvasia Delle Lipari, Malvasia Di Sardegna, Greco Di Gerace, Malvasia de Sitges and Malvasia Dubrovačka—Synonyms of an Old and Famous Grape Cultivar. Vitis Geilweilerhof 2006, 45, 69–73. [Google Scholar]
- Maletić, E.; Pejić, I.; Karoglan Kontić, J.; Zdunić, D.; Preiner, D.; Šimon, S.; Andabaka, Ž.; Žulj Mihaljević, M.; Bubola, M.; Marković, Z.; et al. Ampelographic and Genetic Characterization of Croatian Grapevine Varieties. VITIS—J. Grapevine Res. 2015, 54, 93–98. [Google Scholar] [CrossRef]
- Zdunić, G.; Preece, J.; Dangl, G.; Pitcher, A.; Mucalo, A.; Maletic, E.; Pejic, I. Genetic Characterization of Grapevine Cultivars Collected throughout the Dalmatian Region. Am. J. Enol. Vitic. 2013, 64, 285–290. [Google Scholar] [CrossRef]
- Jeromel, A.; Jagatić Korenika, A.-M.; Tuščić, V.; Tomaz, I.; Maletić, E. The Effect of Enzyme Treatment on the Aroma Profile of Malvasija Dubrovačka Wine. In Proceedings of the VII Međunarodni Simpozij, Malvazije Mediterana, Dubrovnik, Croatia, 27–29 September 2023. [Google Scholar]
- Cirimotić, I.-A. Utjecaj Stabulacije na Sastav i Senzorna Svojstva Vina “Malvasija Dubrovačka”. Master’s Thesis, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia, 2024. [Google Scholar]
- Uzkuç, N.M.Ç.; Uzkuç, H.; Kavdır, Y.; Hamzaoğlu, F.; Toklucu, A.K. Soil-Driven Terroir: Impacts on Vitis vinifera L. Cv. Karasakiz Wine Quality and Phenolic Composition. J. Food Compos. Anal. 2025, 142, 107444. [Google Scholar] [CrossRef]
- Mihelčič, A.; Lisjak, K.; Vanzo, A.; Sivilotti, P.; Čule, M.; Vrščaj, B. Different Soil Types and Relief Influence the Quality of Merlot Grapes in a Relatively Small Area in the Vipava Valley (Slovenia) in Relation to the Vine Water Status IVES. Available online: https://ives-openscience.eu/12740/ (accessed on 25 March 2025).
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organization of Vine and Wine: Paris, France, 2021; Volume 1, ISBN 978-2-85038-033-4. Available online: https://scholar.google.com/scholar_lookup?title=Compendium+of+International+Methods+of+Wine+and+Must+Analysis&author=OIV&publication_year=2021 (accessed on 12 March 2025).
- Tomaz, I.; Šikuten, I.; Tuščić, V.; Rendulić, N.; Preiner, D.; Buljević, N.; Korenika, A.-M.J.; Jeromel, A. Optimisation of SPME Arrow GC/MS Method for Determination of Wine Volatile Organic Compounds. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Falqué, E.; Fernández, E.; Dubourdieu, D. Differentiation of White Wines by Their Aromatic Index. Talanta 2001, 54, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S.; Lacey, M.J.; Boyd, S. Determination of Methoxypyrazines in Red Wines by Stable Isotope Dilution Gas Chromatography–Mass Spectrometry. J. Agric. Food Chem. 1994, 42, 1734–1738. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Ohloff, G. The Fashion of Odors and Their Chemical Perspectives: Scent and Fragrances; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Caro, A.D. Effects of Altitude on the Chemical Composition of Grapes and Wine: A Review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Zimmermann, D.; Müller, J.; Durner, D. Soil Types as Extrinsic Cues Differentially Shape Sensory Perception of German Riesling Wine. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in Vineyard Establishment to Face Global Warming in Viticulture: A Mini Review. J. Sci. Food Agric. 2021, 101, 1261–1269. [Google Scholar] [CrossRef]
- Lukić, I.; Carlin, S.; Vrhovsek, U. Comprehensive 2D Gas Chromatography with TOF-MS Detection Confirms the Matchless Discriminatory Power of Monoterpenes and Provides In-Depth Volatile Profile Information for Highly Efficient White Wine Varietal Differentiation. Foods 2020, 9, 1787. [Google Scholar] [CrossRef]
- Šikuten, I.; Štambuk, P.; Tomaz, I.; Marchal, C.; Kontić, J.K.; Lacombe, T.; Maletić, E.; Preiner, D. Discrimination of Genetic and Geographical Groups of Grape Varieties (Vitis vinifera L.) Based on Their Volatile Organic Compounds. Front. Plant Sci. 2022, 13, 942148. [Google Scholar] [CrossRef]
- Lukic, I.; Horvat, I. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profi Ling. Food Technol. Biotechnol. 2017, 55, 95–108. [Google Scholar] [CrossRef]
- Gambetta, J.; Bastian, S.; Cozzolino, D.; Jeffery, D. Factors Influencing the Aroma Composition of Chardonnay Wines. J. Agric. Food Chem. 2014, 62, 6512–6534. [Google Scholar] [CrossRef] [PubMed]
- Korenika, A.M.J.; Preiner, D.; Tomaz, I.; Jeromel, A. Volatile Profile Characterization of Croatian Commercial Sparkling Wines. Molecules 2020, 25, 4349. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Faria, M.; Sá, F.; Barros, F.; Araújo, I. C6-Alcohols as Varietal Markers for Assessment of Wine Origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef]
- Dunlevy, J.; Kalua, C.; Keyzers, R.; Boss, P.K. The Production of Flavour & Aroma Compounds in Grape Berries. In Grapevine Molecular Physiology and Biotechnology, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 293–340. ISBN 978-90-481-2304-9. [Google Scholar]
- Mendes-Pinto, M.M. Carotenoid Breakdown Products the—Norisoprenoids—In Wine Aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Slaghenaufi, D.; Vanzo, L.; Luzzini, G.; Arapitsas, P.; Marangon, M.; Curioni, A.; Mattivi, F.; Piombino, P.; Moio, L.; Versari, A.; et al. Monoterpenoids and Norisoprenoids in Italian Red Wines: This Article Is Published in Cooperation with Macrowine 2021, 23–30 June 2021. OENO One 2022, 56, 185–193. [Google Scholar] [CrossRef]
- Lin, J.; Massonnet, M.; Cantu, D. The Genetic Basis of Grape and Wine Aroma. Hortic. Res. 2019, 6, 81. [Google Scholar] [CrossRef]
- Marais, J.; van Wyk, C.J.; Rapp, A. Effect of Sunlight and Shade on Norisoprenoid Levels in Maturing Weisser Riesling and Chenin Blanc Grapes and Weisser Riesling Wines. S. Afr. J. Enol. Vitic. 1992, 13, 23–32. [Google Scholar] [CrossRef]
- Oliveira, C.; Ferreira, A.C.; Costa, P.; Guerra, J.; Guedes De Pinho, P. Effect of Some Viticultural Parameters on the Grape Carotenoid Profile. J. Agric. Food Chem. 2004, 52, 4178–4184. [Google Scholar] [CrossRef]
- Falcão, L.D.; de Revel, G.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M.T. A Survey of Seasonal Temperatures and Vineyard Altitude Influences on 2-Methoxy-3-Isobutylpyrazine, C13-Norisoprenoids, and the Sensory Profile of Brazilian Cabernet Sauvignon Wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef]
- Louw, L.; Tredoux, A.G.J.; van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-Derived Aroma Compounds in Varietal Young Wines from South Africa. S. Afr. J. Enol. Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.-C.; Revel, G. de Esters in Wines: New Insight through the Establishment of a Database of French Wines. Am. J. Enol. Vitic. 2014, 65, 293–304. [Google Scholar] [CrossRef]
- Luo, J.; Brotchie, J.; Pang, M.; Marriott, P.J.; Howell, K.; Zhang, P. Free Terpene Evolution during the Berry Maturation of Five Vitis vinifera L. Cultivars. Food Chem. 2019, 299, 125101. [Google Scholar] [CrossRef]
- Savoi, S.; Herrera, J.C.; Carlin, S.; Lotti, C.; Bucchetti, B.; Peterlunger, E.; Castellarin, S.D.; Mattivi, F. From Grape Berries to Wines: Drought Impacts on Key Secondary Metabolites. OENO One 2020, 54, 569–582. [Google Scholar] [CrossRef]
- Duchêne, E.; Butterlin, G.; Claudel, P.; Jaegli, N. Consequences of Elevated Temperatures During Ripening on the Biosynthesis of Monoterpenols in Grape Berries. In Proceedings of the Climwine2016, Bordeaux, France, 10–13 April 2016. [Google Scholar]
- Mateo, J.J.; Jiménez, M. Monoterpenes in Grape Juice and Wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Šikuten, I.; Anić, M.; Štambuk, P.; Tomaz, I.; Stupić, D.; Andabaka, Ž.; Marković, Z.; Karoglan Kontić, J.; Maletić, E.; Karoglan, M.; et al. Biosynthesis and Profiling of Grape Volatile Compounds; Jordao, A.M.S.T., Ed.; Nova Science Publishers: New York, NY, USA, 2020; pp. 271–320. ISBN 978-1-5361-8308-5. [Google Scholar]
Compounds | 2020 | 2021 | p-Values | ||||
---|---|---|---|---|---|---|---|
Grude-K | Grude-B | Grude-K | Grude-B | Location | Vintage | Location × Vintage | |
Alcohol (%, v/v) | 14.10 ± 0.09 | 13.10 ± 0.05 | 11.90 ± 0.06 | 12.70 ± 0.1 | 0.034 | 0.021 | 0.130 |
Dry extract (g/L) | 19.6 ± 0.2 | 21.2 ± 0.3 | 19.8 ± 0.1 | 19.1 ± 0.1 | 0.052 | 0.008 | 0.024 |
Reducing sugars (g/L) | 2.5 ± 0.1 a | 1.1 ± 0.1 b | 5.4 ± 0.2 a | 1.7 ± 0.1 b | 0.005 | 0.020 | 0.002 |
Total acidity * (g/L) | 8.3 ± 0.1 | 8.5 ± 0.1 | 9.0 ± 0.2 | 9.1 ± 0.1 | 0.490 | 0.023 | 0.055 |
Volatile acidity ** (g/L) | 0.32 ± 0.03 | 0.30 ± 0.05 | 0.40 ± 0.06 | 0.44 ± 0.05 | 0.002 | 0.001 | 0.396 |
pH | 2.86 ± 0.01 | 2.88 ± 0.02 | 2.99 ± 0.02 | 2.90 ± 0.01 | 0.643 | 0.340 | 0.549 |
Ash (g/L) | 1.27 ± 0.03 b | 1.62 ± 0.05 a | 1.16 ± 0.03 b | 1.39 ± 0.04 a | 0.001 | 0.009 | 0.001 |
Tartaric acid (g/L) | 5.46 ± 0.09 b | 6.34 ± 0.1 a | 5.05 ± 0.11 b | 6.11 ± 0.08 a | 0.002 | 0.068 | 0.001 |
Malic acid (g/L) | 0.46 ± 0.05 b | 1.51 ± 0.03 a | 0.38 ± 0.06 b | 0.82 ± 0.03 a | <0.0001 | <0.0001 | <0.0001 |
Citric acid (g/L) | 0.13 ± 0.01 | 0.32 ± 0.02 | 0.15 ± 0.01 | 0.31 ± 0.02 | <0.0001 | 0.020 | 0.440 |
a | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds (μg/L) | 2020 Year | 2021 Year | p-Values | ||||||||||||||
Grude-B | Grude-K | Grude-B | Grude-K | Location | Vintage | Location × Vintage | |||||||||||
3-Methylbutanoic acid | 719.91 ± 21.60 a | 585.26 ± 17.56 c | 732.27 ± 21.97 a | 668.84 ± 20.07 b | <0.0001 | 0.004 | 0.016 | ||||||||||
Dodecanoic acid | 43.22 ± 1.30 c | 146.29 ± 4.39 a | 42.52 ± 1.28 c | 102.36 ± 3.07 b | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Nonanoic acid | 30.00 ± 0.90 c | 67.11 ± 2.01 a | 30.28 ± 0.91 c | 49.20 ± 1.48 b | <0.0001 | <0.0001 | <0.0001 | ||||||||||
2-Methyl-propanoic acid | 395.02 ± 11.85 b | 412.89 ± 12.39 ab | 353.78 ± 10.61 c | 420.03 ± 12.60 a | 0.000 | 0.038 | 0.008 | ||||||||||
Acids | |||||||||||||||||
1-Butanol | 300.86 ± 9.03 b | 0.00 | 326.87 ± 9.81 a | 0.00 | <0.0001 | 0.010 | 0.010 | ||||||||||
1-Octanol | 25.33 ± 0.76 c | 27.59 ± 0.83 b | 28.56 ± 0.86 b | 32.33 ± 0.97 a | 0.000 | <0.0001 | 0.166 | ||||||||||
4-Methyl-1-pentanol | 398.79 ± 11.96 a | 281.85 ± 8.46 b | 172.69 ± 5.18 c | 134.05 ± 4.02 d | <0.0001 | <0.0001 | <0.0001 | ||||||||||
1-Propanol | 402.17 ± 12.07 a | 197.74 ± 5.93 c | 328.67 ± 9.84 b | 126.71 ± 3.80 d | <0.0001 | <0.0001 | 0.809 | ||||||||||
3-Ethoxy-1-propanol | 2273.40 ± 68.20 c | 3074.19 ± 92.23 b | 1609.20 ± 42.28 d | 3385.05 ± 101.55 a | <0.0001 | 0.005 | <0.0001 | ||||||||||
2,3-Butanediol | 299.58 ± 8.99 c | 371.80 ± 11.15 b | 401.17 ± 12.04 a | 421.37 ± 12.64 a | 0.000 | <0.0001 | 0.004 | ||||||||||
(E) + (Z)-3-Hexen-1-ol | 527.53 ± 15.83 c | 1046.14 ± 31.38 a | 436.59 ± 13.10 d | 995.46 ± 29.86 b | <0.0001 | 0.001 | 0.184 | ||||||||||
3-Methylpentan-1-ol | 4773.41 ± 143.20 a | 1586.00 ± 47.58 c | 3959.81 ± 118.79 b | 1320.79 ± 39.62 d | <0.0001 | <0.0001 | 0.001 | ||||||||||
Isobutanol | 510.80 ± 15.32 b | 417.09 ± 12.51 c | 330.52 ± 9.92 d | 613.11 ± 18.39 a | <0.0001 | 0.371 | <0.0001 | ||||||||||
Alcohols | |||||||||||||||||
TPB | 11.19 ± 0.34 bc | 13.91 ± 0.42 a | 10.73 ± 0.32 c | 11.66 ± 0.35 b | <0.0001 | 0.000 | 0.003 | ||||||||||
Vitispirane A | 28.65 ± 0.86 b | 16.59 ± 0.50 c | 33.17 ± 1.00 a | 12.04 ± 0.36 d | <0.0001 | 0.974 | <0.0001 | ||||||||||
Vitispirane B | 15.53 ± 0.47 b | 13.61 ± 0.41 c | 10.90 ± 0.32 c | 18.81 ± 0.56 a | <0.0001 | 0.303 | <0.0001 | ||||||||||
C13 | |||||||||||||||||
3-Hexen-1-ol acetate | 95.08 ± 2.85 | 96.17 ± 2.89 | 94.36 ± 2.83 | 95.36 ± 2.86 | 0.543 | 0.657 | 0.979 | ||||||||||
3-Methylbutyl decanoate | 88.79 ± 2.66 b | 96.78 ± 2.90 a | 90.37 ± 2.71 b | 100.15 ± 3.00 a | 0.001 | 0.167 | 0.600 | ||||||||||
Diethyl butanedionate | 333.24 ± 10.00 b | 413.57 ± 12.41 a | 412.98 ± 12.39 a | 425.95 ± 12.78 a | 0.000 | 0.000 | 0.001 | ||||||||||
Ethyl dodecanoate | 8.17 ± 0.25 b | 0.00 | 9.45 ± 0.28 a | 0.00 | <0.0001 | 0.000 | 0.000 | ||||||||||
Ethyl 2-hydroxypropanoate | 71.82 ± 2.15 a | 63.26 ± 1.90 b | 69.49 ± 2.08 a | 43.11 ± 1.29 c | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Ethyl 4-hydroxybutanoate | 70.68 ± 2.12 b | 50.14 ± 1.50 d | 84.13 ± 2.52 a | 62.48 ± 1.87 c | <0.0001 | <0.0001 | 0.649 | ||||||||||
Ethyl 9-decenoate | 128.02 ± 3.84 | 127.62 ± 3.83 | 128.05 ± 3.84 | 127.04 ± 3.81 | 0.757 | 0.905 | 0.892 | ||||||||||
Ethyl 9-hexadecenoate | 13.67 ± 0.41 b | 0.00 | 14.49 ± 0.43 a | 0.00 | <0.0001 | 0.045 | 0.045 | ||||||||||
Ethyl hydrogen succinate | 130.27 ± 3.91 d | 354.29 ± 10.63 a | 197.66 ± 5.93 b | 159.86 ± 4.80 c | <0.0001 | <0.0001 | <0.0001 | ||||||||||
3-Methylbutyl octanoate | 33.92 ± 1.02 c | 62.85 ± 1.89 b | 60.28 ± 1.81 b | 80.69 ± 2.42 a | 0.040 | <0.0001 | 0.902 | ||||||||||
Esters | |||||||||||||||||
α-Terpinen | 165.34 ± 4.96 a | 88.95 ± 2.67 b | 160.08 ± 4.80 a | 85.70 ± 2.57 b | 0.000 | 0.022 | 0.612 | ||||||||||
Guaiazulene | 5.35 ± 0.16 c | 6.07 ± 0.18 a | 5.12 ± 0.15 c | 5.75 ± 0.17 b | <0.0001 | <0.0001 | <0.0001 | ||||||||||
α-Bisabolene | 7.94 ± 0.24 a | 0.00 | 6.30 ± 0.19 b | 0.00 | <0.0001 | <0.0001 | <0.0001 | ||||||||||
ß-Farnesene | 17.28 ± 0.52 a | 0.00 | 13.55 ± 0.41 b | 0.00 | <0.0001 | 0.127 | 0.015 | ||||||||||
D-Limonene | 53.46 ± 1.60 b | 90.47 ± 2.21 a | 47.35 ± 1.42 c | 92.21 ± 2.77 a | <0.0001 | <0.0001 | 0.311 | ||||||||||
3-Carene | 66.64 ± 2.00 c | 133.32 ± 4.00 a | 50.04 ± 1.50 d | 120.44 ± 3.61 b | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Isocaryophyllene | 12.39 ± 0.37 a | 0.00 | 10.34 ± 0.31 b | 0.00 | <0.0001 | <0.0001 | <0.0001 | ||||||||||
Menthol | 8.68 ± 0.26 a | 0.00 | 7.15 ± 0.21 b | 0.00 | <0.0001 | <0.0001 | 0.141 | ||||||||||
(E)-Linalool oxide (furanoid) | 96.24 ± 2.89 d | 121.81 ± 3.65 c | 274.41 ± 8.23 b | 312.57 ± 9.38 a | <0.0001 | <0.0001 | 0.836 | ||||||||||
α-Terpineol | 36.95 ± 1.11 b | 11.57 ± 0.35 d | 45.05 ± 1.35 a | 19.43 ± 0.58 c | <0.0001 | <0.0001 | 0.012 | ||||||||||
Terpenes | |||||||||||||||||
3-(Methylthio)-1-propanol | 3.90 ± 0.12 c | 5.19 ± 0.16 b | 4.99 ± 0.15 b | 6.46 ± 0.19 a | <0.0001 | 0.000 | 0.000 | ||||||||||
4-Vinylguaicol | 29.53 ± 0.89 a | 0.00 | 25.56 ± 0.77 b | 0.00 | <0.0001 | <0.0001 | 0.436 | ||||||||||
Acetoin | 6.92 ± 0.21 a | 3.87 ± 0.12 c | 6.18 ± 0.19 b | 2.99 ± 0.09 d | <0.0001 | 0.004 | 0.016 | ||||||||||
b | |||||||||||||||||
Compounds (μg/L) | ODT (μg/L) | Grude-B 20 | Grude-K 20 | Grude-B 21 | Grude-K 21 | p-Values | |||||||||||
Acids | OAV | ROC % | OAV | ROC % | OAV | ROC % | OAV | ROC % | Location | Vintage | Vintage × Location | ||||||
Butanoic acid | 400 | rancid, cheese | 510.7 ± 15.32 b | 1.28 | 0.30 | 434.19 ± 13.03 c | 1.09 | 0.30 | 612.82 ± 18.38 a | 1.53 | 0.24 | 359.46 ± 10.78 d | 0.90 | 0.16 | <0.0001 | 0.145 | <0.0001 |
Decanoic acid | 1000 | rancid, waxy | 4258.02 ± 127.74 b | 4.26 | 1.01 | 6250.85 ± 127.74 a | 6.25 | 1.71 | 4136.70 ± 124.10 b | 4.14 | 0.65 | 6461.93 ± 193.86 a | 6.46 | 1.13 | <0.0001 | 0.643 | 0.113 |
Hexanoic acid | 420 | cheese, oily | 8118.13 ± 243.54 c | 19.33 | 4.60 | 14,257.49 ± 427.72 a | 33.95 | 9.28 | 7903.98 ± 237.12 c | 18.82 | 2.97 | 11,562.44 ± 346.87 b | 27.53 | 4.83 | <0.0001 | <0.0001 | 0.000 |
Octanoic acid | 500 | rancid, oily | 6895.78 ± 206.87 c | 13.79 | 3.28 | 13,531.00 ± 405.93 a | 27.06 | 7.40 | 6980.43 ± 209.41 c | 13.96 | 2.20 | 9765.85 ± 292.98 b | 19.53 | 3.43 | <0.0001 | <0.0001 | <0.0001 |
Σ | 19,782.69 ± 306.87 c | 9.20 | 34,473.55 ± 405.93 a | 18.68 | 19,633.93 ± 299.41 c | 6.06 | 28,149.68 ± 332.98 b | 9.55 | <0.0001 | 0.000 | 0.000 | ||||||
Alcohols | |||||||||||||||||
Isoamyl alcohol | 30,000 | alcohol, nail polish | 35,487.88 ± 1064.64 a | 1.18 | 0.28 | 34,790.53 ± 1043.72 a | 1.16 | 0.32 | 32,724.77 ± 981.74 b | 1.09 | 0.17 | 31,433.65 ± 343.01 b | 1.05 | 0.18 | 0.126 | 0.001 | 0.624 |
1-Decanol | 5000 | pear, waxy, violet | 3776.98 ± 113.31 a | 0.76 | 0.18 | 2496.05 ± 74.88 c | 0.50 | 0.14 | 3303.83 ± 99.12 b | 0.66 | 0.10 | 2045.19 ± 61.36 d | 0.51 | 0.07 | <0.0001 | <0.0001 | 0.835 |
1-Hexanol | 2500 | grass just cut | 2401.90 ± 72.06 a | 0.96 | 0.23 | 2471.16 ± 74.14 a | 0.99 | 0.27 | 2188.98 ± 65.67 b | 0.88 | 0.14 | 2122.25 ± 63.67 b | 0.85 | 0.15 | 0.975 | 0.000 | 0.126 |
Phenylethyl alcohol | 14,000 | floral, rose, honey | 18,188.69 ± 545.66 c | 1.30 | 0.31 | 21,074.32 ± 623.23 b | 1.51 | 0.41 | 19,064.90 ± 571.95 c | 1.36 | 0.21 | 22,615.35 ± 678.46 a | 1.62 | 0.28 | <0.0001 | 0.009 | 0.372 |
Σ | 59,855.45 ± 1064.69 a | 1.00 | 60,832.08 ± 943.75 a | 1.13 | 57,282.49 ± 989.24 a | 0.63 | 58,216.45 ± 746.01 a | 0.69 | 0.624 | 0.016 | 0.435 | ||||||
C13 | |||||||||||||||||
β-Damascenone | 0.05 | sweet, fruity, floral, honey | 8.22 ± 0.25 b | 164.38 | 39.14 | 3.85 ± 0.12 d | 77.08 | 21.06 | 9.98 ± 0.30 a | 199.64 | 31.48 | 5.69 ± 0.17 c | 113.86 | 19.98 | <0.0001 | <0.0001 | 0.772 |
TDN | 2 | petrol, kerosene | 15.18 ± 0.46 a | 7.59 | 1.81 | 18.38 ± 0.55 a | 9.19 | 2.51 | 15.71 ± 0.47 a | 7.85 | 1.24 | 17.43 ± 0.52 a | 8.71 | 1.53 | <0.0001 | 0.483 | 0.033 |
Σ | 23.40 ± 0.96 a | 40.94 | 18.38 ± 0.55 b | 23.58 | 25.69 ± 0.97 a | 32.72 | 23.12 ± 0.32 a | 21.51 | 0.006 | 0.385 | 0.065 | ||||||
Esters | |||||||||||||||||
Isoamyl acetate | 30 | banana | 1475.34 ± 44.26 b | 49.18 | 11.71 | 1012.44 ± 30.37 c | 33.75 | 9.22 | 2319.11 ± 69.57 a | 77.30 | 12.19 | 2326.09 ± 69.78 a | 77.54 | 13.60 | 0.000 | <0.0001 | <0.0001 |
2-Phenylethyl acetate | 250 | rose, honey, tobacco | 1199.93 ± 36.00 b | 4.80 | 1.14 | 1419.12 ± 42.57 a | 5.68 | 1.55 | 1005.44 ± 30.16 c | 4.02 | 0.63 | 1134.63 ± 34.04 b | 4.54 | 0.80 | <0.0001 | <0.0001 | 0.062 |
Ethyl decanoate | 200 | floral, grape, fruity | 314.83 ± 9.44 a | 1.57 | 0.37 | 305.08 ± 9.15 a | 1.53 | 0.42 | 328.74 ± 9.86 a | 1.64 | 0.26 | 307.35 ± 8.24 a | 1.54 | 0.27 | 0.021 | 0.175 | 0.316 |
Ethyl hexanoate | 14 | fruity, green, apple, banana | 2011.89 ± 60.36 c | 143.71 | 34.22 | 2287.15 ± 68.61 b | 163.37 | 44.64 | 4136.23 ± 124.09 a | 295.45 | 46.59 | 4228.78 ± 126.86 a | 302.06 | 52.99 | 0.013 | <0.0001 | 0.151 |
Ethyl octanoate | 580 | sweet, floral, fruity, pear | 1478.98 ± 44.37 b | 2.55 | 0.61 | 1502.65 ± 45.08 b | 2.59 | 0.71 | 1487.09 ± 44.61 b | 2.56 | 0.40 | 1662.79 ± 49.88 a | 2.87 | 0.50 | 0.006 | 0.013 | 0.021 |
Σ | 6480.96 ± 49.27 b | 48.05 | 6526.46 ± 55.18 b | 56.54 | 9276.61 ± 41.33 a | 60.08 | 9659.63 ± 54.78 a | 68.17 | 0.040 | <0.0001 | 0.902 | ||||||
Terpenes | |||||||||||||||||
Citronellol | 40 | rose | 25.34 ± 0.76 a | 0.63 | 0.15 | 0.00 | 25.34 ± 0.76 a | 0.63 | 0.16 | 0.00 | <0.0001 | 0.995 | 0.995 | ||||
Hotrienol | 110 | fresh, floral, fruity | 78.10 ± 2.34 b | 0.71 | 0.17 | 14.55 ± 0.44 d | 0.13 | 0.04 | 94.51 ± 2.84 a | 0.86 | 0.14 | 40.74 ± 1.22 c | 0.37 | 0.08 | <0.0001 | <0.0001 | 0.002 |
Linalool | 25 | citrus, floral, sweet | 24.92 ± 0.75 a | 1.00 | 0.24 | 0.00 | 17.57 ± 0.53 b | 0.70 | 0.17 | 0.00 | <0.0001 | <0.0001 | <0.0001 | ||||
Σ | 128.35 ± 5.75 a | 0.56 | 14.55 ± 0.44 d | 0.04 | 137.42 ± 1.73 b | 0.47 | 40.74 ± 1.22 c | 0.08 | <0.0001 | <0.0001 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žeravica, D.I.; Tomaz, I.; Preiner, D.; Šikuten, I.; Stupić, D.; Jeromel, A.; Maletić, E. Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines. Beverages 2025, 11, 87. https://doi.org/10.3390/beverages11030087
Žeravica DI, Tomaz I, Preiner D, Šikuten I, Stupić D, Jeromel A, Maletić E. Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines. Beverages. 2025; 11(3):87. https://doi.org/10.3390/beverages11030087
Chicago/Turabian StyleŽeravica, Domagoj Ivan, Ivana Tomaz, Darko Preiner, Iva Šikuten, Domagoj Stupić, Ana Jeromel, and Edi Maletić. 2025. "Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines" Beverages 11, no. 3: 87. https://doi.org/10.3390/beverages11030087
APA StyleŽeravica, D. I., Tomaz, I., Preiner, D., Šikuten, I., Stupić, D., Jeromel, A., & Maletić, E. (2025). Aromatic Profiles and Vineyard Location: Uncovering Malvasija Dubrovačka Wines. Beverages, 11(3), 87. https://doi.org/10.3390/beverages11030087