Stable Isotope Analysis of Alcoholic Beverages: A Review
Abstract
:1. Introduction
- –
- The carbon isotopic composition is a function of the type of metabolism of the plant from which the beverage is derived (C3, C4, and CAM) and is in turn influenced by certain climatic parameters. Carbon isotope signatures distinguish C3 (Calvin cycle), C4 (Hatch–Slack cycle), and CAM (Crassulacean acid metabolism) plants, as each pathway produces distinct δ13C values: C3 plants (e.g., sugar beet) range from −22‰ to −33‰, C4 plants (e.g., maize, sugarcane, sorghum) have values ranging from −8‰ to −16‰, and CAM plants (e.g., pineapple, cactus, vanilla) show intermediate values between C3 and C4 (−10‰ to −16‰) [5].
- –
- Hydrogen and oxygen are closely related to the water absorbed by the plant during its life and/or to the water used in the beverage manufacturing process.
- –
- Nitrogen and sulfur depend on nutrient availability and are influenced by fertilization practices and soil characteristics.
2. Beer
- The original source of the water used to produce the beverage.
- The transport and fractionation of the water source before beverage production.
- Seasonal variability affecting the water source before transport.
- The fractionation during brewing as demonstrated by Brettel et al. [15].
3. Wine
3.1. Deuterium
3.2. Carbon
3.2.1. Ethanol
3.2.2. Glycerol
3.2.3. CO2
3.2.4. Other Applications
3.3. Oxygen
3.4. Nitrogen
4. Liquors and Distillates
4.1. Whisky
4.2. Vodka
4.3. Brandies, Spirits and Liqueurs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DALYs | Disability-Adjusted Life Years |
IRMS | Isotope Ratio Mass Spectrometry |
SNIF-NMR | Site-Specific Natural Isotope Fractionation Nuclear Magnetic Resonance |
CAM | Crassulacean acid metabolism |
GC-C | Gas chromatography–combustion |
GMWL | Global Meteoric Water Line |
IRIS | Isotope Ratio Infrared Spectroscopy |
MC-ICP-MS | Multi-Collector Inductively Coupled Plasma Mass Spectrometry |
PDO | Protected designation of origin |
PGI | Protected geographical indication |
GI | Geographical indication |
SIRA | Stable isotope ratio analysis |
LC | Liquid chromatography |
Ψpd | Leaf water potential |
VOCs | Volatile organic compounds |
GC-FID | Gas chromatography–flame ionization detector |
FIA-IRMS | Flow Injection Analysis–Isotope Ratio Mass Spectrometry |
EA-IRMS | Elemental Analysis–Isotope Ratio Mass Spectrometry |
GC-MSD | Gas chromatography–mass selective detector |
References
- Straits Research. Alcoholic Beverages Market Size, Share & Trends Analysis Report By Type (Beer, Wine, Other, Champagne, Distilled Spirits), by Distribution Channel (Supermarkets/Hypermarkets, Restaurants, Others, Bars/Clubs, Liquor Stores) and By Region (North America, Europe, APAC, Middle East and Africa, LATAM) Forecasts, 2024–2032. 7/2024. Available online: https://straitsresearch.com/report/canned-alcoholic-beverages-market (accessed on 30 October 2024).
- European Commision. Alcoholic Beverages. In Health Promotion and Disease Prevention Knowledge Gateway [Internet]; Health Promotion Knowledge Gateway Team: Brussels, Belgium, 2024; Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/alcoholic-beverages_en (accessed on 15 November 2024).
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Rossmann, A.; Haberhauer, G.; Hölzl, S.; Horn, P.; Pichlmayer, F.; Voerkelius, S. The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur. Food Res. Technol. 2000, 211, 32–40. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Carter, J.F.; Chesson, L.A. Food Forensics; CRC Press: London, UK, 2021. [Google Scholar]
- Hornsey, I.S. A History of Beer and Brewing; Royal Society of Chemistry: Cambridge, UK, 2003. [Google Scholar]
- General Standard for Food Additives. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/zh/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS+192-1995%2FCXS_192e.pdf (accessed on 31 January 2025).
- Brooks, J.R.; Buchmann, N.; Phillips, S.; Ehleringer, B.; Evans, R.D.; Lott, M.; Martinelli, L.A.; Pockman, W.T.; Sandquist, D.; Sparks, J.P.; et al. Heavy and light beer: A carbon isotope approach to detect C4 carbon in beers of different origins, styles, and prices. J. Agric. Food Chem. 2002, 50, 6413–6418. [Google Scholar] [CrossRef]
- Stern, L.A.; Chamberlain, C.P.; Blum, J.D.; Fogel, M.L. Isotopic lessons in a beer bottle. J. Geosci. Educ. 1997, 45, 157–161. [Google Scholar] [CrossRef]
- Mardegan, S.F.; Andrade, T.M.B.; de Sousa Neto, E.R.; de Castro Vasconcellos, E.B.; Martins, L.F.B.; Mendonça, T.G.; Martinelli, L.A. Stable carbon isotopic composition of Brazilian beers—A comparison between large- and small-scale breweries. J. Food Compos. Anal. 2013, 29, 52–57. [Google Scholar] [CrossRef]
- Calderone, G.; Guillou, C.; Reniero, F.; Naulet, N. Helping to authenticate sparkling drinks with 13C/12C of CO2 by gas chromatography-isotope ratio mass spectrometry. Food Res. Int. 2007, 40, 324–331. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Moreira, M.Z.; Ometto, J.P.H.B.; Alcarde, A.R.; Rizzon, L.A.; Stange, E.; Ehleringer, J.R. Stable carbon isotopic composition of the wine and CO2 bubbles of sparkling wines: Detecting C4 sugar additions. J. Agric. Food Chem. 2003, 51, 2625–2631. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.researchgate.net/publication/267230658_Examination_of_the_13_C_12_C_Isotopes_in_sparkling_and_semi-sparkling_wine_with_the_aid_of_simple_on-line_sampling (accessed on 5 February 2025).
- Brettell, R.; Montgomery, J.; Evans, J. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. J. Anal. Spectrom. 2012, 27, 778. [Google Scholar] [CrossRef]
- Carter, J.F.; Yates, H.S.A.; Tinggi, U. A global survey of the stable isotope and chemical compositions of bottled and canned beers as a guide to authenticity. Sci. Justice 2015, 55, 18–26. [Google Scholar] [CrossRef]
- Chesson, L.A.; Valenzuela, L.O.; O’grady, S.P.; Cerling, T.E.; Ehleringer, J.R. Links between Purchase Location and Stable Isotope Ratios of Bottled Water, Soda, and Beer in the United States. J. Agric. Food Chem. 2010, 58, 7311–7316. [Google Scholar] [CrossRef] [PubMed]
- Chesson, L.A.; Bowen, G.J.; Ehleringer, J.R. Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy. Rapid Commun. Mass Spectrom. 2010, 24, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Styring, A.K.; Fraser, R.A.; Bogaard, A.; Evershed, R.P. The effect of manuring on cereal and pulse amino acid δ(15)N values. Phytochemistry 2014, 102, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Tixier, P.; Loeillet, D.; Coulis, M.; Lescot, T.; de Lapeyre de Bellaire, L. Isotopes Don’t Lie, differentiating organic from conventional banana (Musa AAA, Cavendish subgroup) fruits using C and N stable isotopes. Food Chem. 2022, 394, 133491. [Google Scholar] [CrossRef]
- Giannioti, Z.; Ogrinc, N.; Suman, M.; Camin, F.; Bontempo, L. Isotope ratio mass spectrometry (IRMS) methods for distinguishing organic from conventional food products: A review. TrAC Trends Anal. Chem. 2024, 170, 117476. [Google Scholar] [CrossRef]
- Golubović, J.B.; Heath, E.; Košir, I.J.; Ogrinc, N.; Potočnik, D.; Strojnik, L.; Heath, D. Differences in the levels of the selected phytoestrogens and stable isotopes in organic vs. Conventional hops and beer. Foods 2021, 10, 1839. [Google Scholar] [CrossRef]
- Laursen, K.H.; Mihailova, A.; Kelly, S.D.; Epov, V.N.; Bérail, S.; Schjoerring, J.K.; Donard, O.; Larsen, E.; Pedentchouk, N.; Marca-Bell, A.; et al. Is it really organic?--multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chem. 2013, 141, 2812–2820. [Google Scholar] [CrossRef]
- Giner Martínez-Sierra, J.; Santamaria-Fernandez, R.; Hearn, R.; Marchante Gayón, J.M.; García Alonso, J.I. Development of a direct procedure for the measurement of sulfur isotope variability in beers by MC-ICP-MS. J. Agric. Food Chem. 2010, 58, 4043–4050. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. OIV Standards and Technical Documents International Code of Oenological Practices Part I—Definitions; International Organization of Vine and Wine—Intergovernamental Organization [Internet]: Lyon, France, 2022; Available online: https://www.oiv.int/standards/international-code-of-oenological-practices/part-i-definitions/wines (accessed on 3 December 2024).
- Martin, G.J.; Martin, M.L.; Mabon, F.; Michon, M.J. Identification of the origin of natural alcohols by natural abundance hydrogen-2 nuclear magnetic resonance. Anal. Chem. 1982, 54, 2380–2382. [Google Scholar] [CrossRef]
- Gérard, J.M.; Guillou, C.; Martin, M.L.; Cabanis, M.-T.; Tep, Y.; Aerny, J. Natural Factors of Isotope Fractionation and the Characterization of Wines. J. Agric. Food Chem. 1988, 36, 316–322. Available online: https://pubs.acs.org/doi/epdf/10.1021/jf00080a019?ref=article_openPDF (accessed on 6 December 2024).
- Guillou, C.; Remaud, G.; Martin, G.J. Applications of NMR to the characterization and authentication of foods and beverages. Trends Food Sci. Technol. 1992, 3, 197–201. [Google Scholar] [CrossRef]
- Martin, G.J.; Martin, M.L. Détermination par résonance magnétique nucléaire du deutérium du fractionnement isotopique spécifique naturel. Application à la détection de la chaptalisation des vins. J. De Chim. Phys. Et De Phys.-Chim. Biol. 1983, 80, 293–297. [Google Scholar] [CrossRef]
- Perini, M.; Pianezze, S.; Guardini, K.; Allari, L.; Larcher, R. Authentication and geographical characterisation of Italian grape musts through glucose and fructose carbon isotopic ratios determined by LC-IRMS. Molecules 2023, 28, 1411. [Google Scholar] [CrossRef] [PubMed]
- Christoph, N.; Hermann, A.; Wachter, H. 25 Years authentication of wine with stable isotope analysis in the European Union—Review and outlook. BIO Web Conf. 2015, 5, 02020. [Google Scholar] [CrossRef]
- Bauer-Christoph, C.; Wachter, H.; Christoph, N.; Rßmann, A.; Adam, L. Assignment of raw material and authentication of spirits by gas chromatography, hydrogen- and carbon-isotope ratio measurements. Z. Für Leb. Und-Forschung A 1997, 204, 445–452. [Google Scholar] [CrossRef]
- Perini, M.; Failoni, A.; Simoni, M.; Tonon, A.; Camin, F. Influence of fermentation water on stable isotopic D/H ratios of alcohol obtained from concentrated grape must. Molecules 2020, 25, 3139. [Google Scholar] [CrossRef]
- Camin, F.; Dordevic, N.; Wehrens, R.; Neteler, M.; Delucchi, L.; Postma, G.; Buydens, L. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine. Anal. Chim. Acta 2015, 853, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Bigwood, T.; Sharman, M.; Aldus, A.; Dennis, M.J. Global variations in the deuterium/hydrogen isotope ratios of wine. J. Wine Res. 1998, 9, 155–166. [Google Scholar] [CrossRef]
- Martin, G.J.; Mazure, M.; Jouitteau, C.; Martin, Y.-L.; Aguile, L.; Allain, P. Characterization of the geographic origin of Bordeaux wines by a combined use of isotopic and trace element measurements. Am. J. Enol. Vitic. 1999, 50, 409–417. [Google Scholar] [CrossRef]
- Košir, I.J.; Kocjančič, M.; Ogrinc, N.; Kidrič, J. Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines). Anal. Chim. Acta 2001, 429, 195–206. [Google Scholar] [CrossRef]
- Ogrinc, N.; Košir, I.J.; Kocjančič, M.; Kidrič, J. Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF-NMR analyses. J. Agric. Food Chem. 2001, 49, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Pîrnău, A.; Bogdan, M.; Măgdaş, D.A.; Stătescu, D. Isotopic Analysis of some Romanian Wines by 2H NMR and IRMS. Food Biophys. 2013, 8, 24–28. [Google Scholar] [CrossRef]
- Giménez-Miralles, J.E.; Salazar, D.M.; Solana, I. Regional origin assignment of red wines from Valencia (Spain) by 2H NMR and 13C IRMS stable isotope analysis of fermentative ethanol. J. Agric. Food Chem. 1999, 47, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xue, J.; Liu, X.; Wang, D.-L.; Guo, Y.; Wang, L. The application of SNIF-NMR and IRMS combined with C, H and O isotopes for detecting the geographical origin of Chinese wines. Int. J. Food Sci. Technol. 2015, 50, 774–781. [Google Scholar] [CrossRef]
- Field, O.F. Determination by Isotope Ratio Mass Spectometry 13C/12C of Wine Ethanol or That Obtained Through the Fermentation of Musts, Concentrated Musts or Grape Sugar. Available online: https://www.oiv.int/public/medias/2496/oiv-ma-as312-06.pdf (accessed on 9 December 2024).
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Cabañero, A.I.; Recio, J.L.; Rupérez, M. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry. J. Agric. Food Chem. 2010, 58, 722–728. [Google Scholar] [CrossRef]
- Calderone, G.; Naulet, N.; Guillou, C.; Reniero, F. Characterization of European wine glycerol: Stable carbon isotope approach. J. Agric. Food Chem. 2004, 52, 5902–5906. [Google Scholar] [CrossRef]
- Jung, J.; Jaufmann, T.; Hener, U.; Münch, A.; Kreck, M.; Dietrich, H.; Mosandl, A. Progress in wine authentication: GC–C/P–IRMS measurements of glycerol and GC analysis of 2,3-butanediol stereoisomers. Eur. Food Res. Technol. 2006, 223, 811–820. [Google Scholar] [CrossRef]
- Guyon, F.; Gaillard, L.; Salagoïty, M.-H.; Médina, B. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: Toward determining constants for wine authentication. Anal. Bioanal. Chem. 2011, 401, 1551–1558. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis Edition 2022; OIV: Lyon, France, 2021; Volume 1, Available online: https://www.oiv.int/sites/default/files/publication/2022-10/Compendium%20Methods%20of%20Analysis%20of%20Wine%20and%20Musts%20Vol1%20and%20Vol2.pdf (accessed on 11 December 2024).
- Leonardelli, S.; Dutra, S.V.; Carnieli, G.J.; Spinelli, F.; de Ferreira, D.S.; Vanderlinde, R. Exogenous CO2 in South American sparkling wine. BIO Web Conf. 2016, 7, 02001. [Google Scholar] [CrossRef]
- Cabañero, A.I.; San-Hipólito, T.; Rupérez, M. GasBench/isotope ratio mass spectrometry: A carbon isotope approach to detect exogenous CO2 in sparkling drinks. Rapid Commun. Mass Spectrom. 2007, 21, 3323–3328. [Google Scholar] [CrossRef] [PubMed]
- Calderone, G.; Naulet, N.; Guillou, C.; Reniero, F.; Cortes, A.I.B. Analysis of the 13C natural abundance of CO2 gas from sparkling drinks by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.E.; Vogiatzaki, M.; Zufferey, V. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status. J. Chromatogr. A 2017, 1517, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.E.; Zufferey, V. Carbon isotope compositions of whole wine, wine solid residue, and wine ethanol, determined by EA/IRMS and GC/C/IRMS, can record the vine water status-a comparative reappraisal. Anal. Bioanal. Chem. 2019, 411, 2031–2043. [Google Scholar] [CrossRef]
- Paolini, M.; Roncone, A.; Cucinotta, L.; Sciarrone, D.; Mondello, L.; Camin, F.; Moser, S.; Larcher, R.; Bontempo, L. Aromatic characterisation of Moscato Giallo by GC-MS/MS and validation of stable isotopic ratio analysis of the major volatile compounds. Biomolecules 2024, 14, 710. [Google Scholar] [CrossRef]
- Cucinotta, L.; Cannizzaro, F.; Paolini, M.; Roncone, A.; Camin, F.; Bontempo, L.; Larcher, R.; Sciarrone, D.; Mondello, L. From grape to wine: A thorough compound specific isotopic, enantiomeric and quali-quantitative investigation by means of gas chromatographic analysis. J. Chromatogr. A 2024, 1730, 465149. [Google Scholar] [CrossRef]
- Bowen, G.J. Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res. 2008, 113, D5. [Google Scholar] [CrossRef]
- Bononi, M.; Tateo, F.; Failla, O.; Mariani, L.; Quaglia, G. Meteorological Based Modeling of δ 1 18O Values for Wines 2 with the “Prosecco” Controlled Designation of Origin. Am. J. Ecol. Vitic. 2020, 2020, 19050. [Google Scholar]
- Hermann, A.; Voerkelius, S. Meteorological impact on oxygen isotope ratios of German wines. Am. J. Enol. Vitic. 2008, 59, 194–199. [Google Scholar] [CrossRef]
- Roßmann, A.; Reniero, F.; Moussa, I.; Schmidt, H.-L.; Versini, G.; Merle, M.H. Stable oxygen isotope content of water of EU data-bank wines from Italy, France and Germany. Z. Für Leb. Und-Forsch. A 1999, 208, 400–407. [Google Scholar] [CrossRef]
- Perini, M.; Camin, F. δ 18O of ethanol in wine and spirits for authentication purposes. J. Food Sci. 2013, 78, C839–C844. [Google Scholar] [CrossRef] [PubMed]
- Jamin, E.; Guérin, R.; Rétif, M.; Lees, M.; Martin, G.J. Improved detection of added water in orange juice by simultaneous determination of the oxygen-18/oxygen-16 isotope ratios of water and ethanol derived from sugars. J. Agric. Food Chem. 2003, 51, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Paolini, M.; Ziller, L.; Bertoldi, D.; Bontempo, L.; Larcher, R.; Nicolini, G.; Camin, F. δ15N from soil to wine in bulk samples and proline. J. Mass Spectrom. 2016, 51, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008. Document 32019R0787 2019. p. 58. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:02019R0787-20240513 (accessed on 18 December 2024).
- Simpkins, W.A. Congener profiles in the detection of illicit spirits. J. Sci. Food Agric. 1985, 36, 367–376. [Google Scholar] [CrossRef]
- Parker, I.G.; Kelly, S.D.; Sharman, M.; Dennis, M.J.; Howie, D. Investigation into the use of carbon isotope ratios (13C/12C) of Scotch whisky congeners to establish brand authenticity using gas chromatography-combustion-isotope ratio mass spectrometry. Food Chem. 1998, 63, 423–428. [Google Scholar] [CrossRef]
- Rhodes, C.; Heaton, K.; Goodall, I.; Brereton, P. Gas chromatography carbon isotope ratio mass spectrometry applied to the detection of neutral alcohol in Scotch whisky: An internal reference approach. Food Chem. 2009, 114, 697–701. [Google Scholar] [CrossRef]
- van Leeuwen, K.A.; Prenzler, P.D.; Ryan, D.; Paolini, M.; Camin, F. Differentiation of wood-derived vanillin from synthetic vanillin in distillates using gas chromatography/combustion/isotope ratio mass spectrometry for δ13 C analysis. Rapid Commun. Mass Spectrom. 2018, 32, 311–318. [Google Scholar] [CrossRef]
- Jochmann, M.A.; Steinmann, D.; Stephan, M.; Schmidt, T.C. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages. J. Agric. Food Chem. 2009, 57, 10489–10496. [Google Scholar] [CrossRef]
- Ciepielowski, G.; Pacholczyk-Sienicka, B.; Frączek, T.; Klajman, K.; Paneth, P.; Albrecht, Ł. Comparison of quantitative NMR and IRMS for the authentication of “Polish Vodka”. J. Sci. Food Agric. 2019, 99, 263–268. [Google Scholar] [CrossRef]
- Winterová, R.; Mikulíková, R.; Mazáč, J.; Havelec, P. Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio analyses. Czech J. Food Sci. 2008, 26, 368–375. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Muñoz-Sánchez, M.; Romero-Cano, L.A. Isotopic differences between Tequila and Tequila 100% agave silver class: Effect of sugar enrichment on the δ13CVPDB on the beverage congeners. J. Food Compos. Anal. 2024, 129, 106134. [Google Scholar] [CrossRef]
- Aguilar-Cisneros, B.O.; López, M.G.; Richling, E.; Heckel, F.; Schreier, P. Tequila authenticity assessment by headspace SPME-HRGC-IRMS analysis of 13C/12C and 18O/16O ratios of ethanol. J. Agric. Food Chem. 2002, 50, 7520–7523. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, F.; Hashiguchi, T.; Igi, Y.; Izu, H.; Fujii, T. Carbon stable isotope analysis for glucose in sake: Simple freeze-dried sake can substitute for glucose following HPLC isolation. Food Anal. Methods 2017, 10, 2792–2799. [Google Scholar] [CrossRef]
- Suto, M.; Kawashima, H. Carbon isotope ratio of organic acids in sake and wine by solid-phase extraction combined with LC/IRMS. Anal. Bioanal. Chem. 2021, 413, 355–363. [Google Scholar] [CrossRef]
- Ishida-Fujii, K.; Goto, S.; Uemura, R.; Yamada, K.; Sato, M.; Yoshida, N. Botanical and geographical origin identification of industrial ethanol by stable isotope analyses of C, H, and O. Biosci. Biotechnol. Biochem. 2005, 69, 2193–2199. [Google Scholar] [CrossRef]
- Akamatsu, F.; Oe, T.; Hashiguchi, T.; Hisatsune, Y.; Kawao, T.; Fujii, T. Application of carbon and hydrogen stable isotope analyses to detect exogenous citric acid in Japanese apricot liqueur. Food Chem. 2017, 228, 297–300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncone, A.; Bontempo, L. Stable Isotope Analysis of Alcoholic Beverages: A Review. Beverages 2025, 11, 89. https://doi.org/10.3390/beverages11030089
Roncone A, Bontempo L. Stable Isotope Analysis of Alcoholic Beverages: A Review. Beverages. 2025; 11(3):89. https://doi.org/10.3390/beverages11030089
Chicago/Turabian StyleRoncone, Alberto, and Luana Bontempo. 2025. "Stable Isotope Analysis of Alcoholic Beverages: A Review" Beverages 11, no. 3: 89. https://doi.org/10.3390/beverages11030089
APA StyleRoncone, A., & Bontempo, L. (2025). Stable Isotope Analysis of Alcoholic Beverages: A Review. Beverages, 11(3), 89. https://doi.org/10.3390/beverages11030089