Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality
Abstract
:1. Introduction
2. Method
2.1. Literature Search
2.2. Including and Excluding Criteria
3. Results and Discussion
3.1. Raw Drinking Milk Definition and Legal Framework
3.2. Microbial Ecology in Raw Milk
3.2.1. Spoilage Microorganisms
Lactic Acid Bacteria
Psychrotrophic Microorganisms
Coliforms
Fungi
3.2.2. Raw Milk Pathogenic Microorganisms
3.3. Assessment of Public Health Risks upon Raw Milk Consumption
3.3.1. Quantitative Microbial Risk Assessment
3.3.2. Developed Models
3.4. Heat Treatment of Raw Milk
3.4.1. Pasteurization
3.4.2. UHT Sterilization
3.4.3. In-Bottle Sterilization
3.4.4. Thermization
3.5. Heat Treatment and Milk Quality
3.5.1. Microbiological Effect
3.5.2. Nutritional Effect
Proteins and Enzymes
Lipids
Lactose
Vitamins
Minerals
3.5.3. Organoleptic Effect
3.6. Scientific Evidence behind Claimed Health Benefits of Raw Milk Consumption
3.6.1. Raw Milk and Lactose Intolerance
3.6.2. Raw Milk and Protection against Asthma and Allergies
3.7. Novel Milk Processing Technologies
3.7.1. Ohmic Heating
3.7.2. Microwave Heating
3.7.3. Pulsed Electric Field
3.7.4. High-Pressure Processing
3.7.5. Microfiltration
3.7.6. Ultrasound
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- GoodMills Innovation. Kampffmeyer Food Innovation Study. 2012. Available online: http://goodmillsinnovation.com/sites/kfi.kampffmeyer.faktor3server.de/files/attachments/1_pi_kfi_cleanlabelstudy_english_final.pdf/ (accessed on 3 September 2017).
- The Nielsen Company. We Are What We Eat. Healthy Eating Trends around the World. 2015. Available online: https://www.nielsen.com/content/dam/nielsenglobal/eu/nielseninsights/pdfs/Nielsen%20Global%20Health%20and%20Wellness%20Report%20-%20January%202015.pdf (accessed on 3 September 2017).
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the Public Health Risks Related to the Consumption of Raw Drinking Milk: Public Health Risks Related to Raw Drinking Milk. EFSA J. 2015, 13, 3940. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. The Dangers of Raw Milk: Unpasteurized Milk Can Pose a Serious Health Risk. Available online: https://www.fda.gov/food/resourcesforyou/consumers/ucm079516.htm (accessed on 3 September 2017).
- Centers for Disease Control and Prevention. Raw Milk. Available online: https://www.cdc.gov/foodsafety/rawmilk/raw-milk-index.html (accessed on 3 September 2017).
- European Parliament and the Council of the European Union. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L 139, 55–205. [Google Scholar]
- European Parliament and the Council of the European Union. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Union 2002, L 31, 1–24. [Google Scholar]
- European Parliament and the Council of the European Union. Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off. J. Eur. Union 2004, L 139, 206–320. [Google Scholar]
- Latorre, A.A.; Van Kessel, J.S.; Karns, J.S.; Zurakowski, M.J.; Pradhan, A.K.; Boor, K.J.; Jayarao, B.M.; Houser, B.A.; Daugherty, C.S.; Schukken, Y.H. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J. Dairy Sci. 2010, 93, 2792–2802. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Serraino, A.; Finazzi, G.; Daminelli, P.; Losio, M.N.; Tamba, M.; Garigliani, A.; Mattioli, R.; Riu, R.; Zanoni, R.G. Field handling conditions of raw milk sold in vending machines: Experimental evaluation of the behaviour of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella Typhimurium and Campylobacter jejuni. Ital. J. Anim. Sci. 2012, 11, e24. [Google Scholar] [CrossRef]
- Marchand, S.; De Block, J.; De Jonghe, V.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Moatsou, G. Sanitary Procedures, Heat Treatments and Packaging. In Milk and Dairy Products in Human Nutrition; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons: Chichester, UK, 2013; pp. 288–309. [Google Scholar]
- Moatsou, G.; Moschopoulou, E. Microbiology of Raw Milk. In Dairy Microbiology and Biochemistry: Recent Developments; Ozer, B.H., Akdemir-Evrendilek, G., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 1–38. [Google Scholar]
- Quigley, L.; McCarthy, R.; O’Sullivan, O.; Beresford, T.P.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C.; Cotter, P.D. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. J. Dairy Sci. 2013, 96, 4928–4937. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Bonizzi, I.; Buffoni, J.N.; Feligini, M.; Enne, G. Investigating the relationship between raw milk bacterial composition, as described by intergenic transcribed spacer-PCR fingerprinting and pasture altitude. J. Appl. Microbiol. 2009, 107, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Vacheyrou, M.; Normand, A.-C.; Guyot, P.; Cassagne, C.; Piarroux, R.; Bouton, Y. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 2011, 146, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Hagi, T.; Kobayashi, M.; Nomura, M. Molecular-based analysis of changes in indigenous milk microflora during the grazing period. Biosci. Biotechnol. Biochem. 2010, 74, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Van Hoorde, K.; Heyndrickx, M.; Vandamme, P.; Huys, G. Influence of pasteurization, brining conditions and production environment on the microbiota of artisan Gouda-type cheeses. Food Microbiol. 2010, 27, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Von Neubeck, M.; Baur, C.; Krewinkel, M.; Stoeckel, M.; Kranz, B.; Stressler, T.; Fischer, L.; Hinrichs, J.; Scherer, S.; Wenning, M. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int. J. Food Microbiol. 2015, 211, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Duthoit, F.; Delbès, C.; Ferrand, M.; Le Frileux, Y.; De Crémoux, R.; Montel, M.-C. Stability of microbial communities in goat milk during a lactation year: Molecular approaches. Syst. Appl. Microbiol. 2007, 30, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Bluma, A.; Ciprovica, I. Diversity of lactic acid bacteria in raw milk. In Research for Rural Development, Proceedings of the International Scientific Conference: Research for Rural Development, Jelgava, Latvia, 13–15 May 2015; Latvia University of Agriculture: Jelgava, Latvia, 2015. [Google Scholar]
- Touch, V.; Deeth, H.C. Microbiology of Raw and Market Milks. In Milk Processing and Quality Management; Tamine, A.Y., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 48–71. [Google Scholar]
- De Oliveira, G.B.; Favarin, L.; Luchese, R.H.; McIntosh, D. Psychrotrophic bacteria in milk: How much do we really know? Braz. J. Microbiol. 2015, 46, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hantsis-Zacharov, E.; Halpern, M. Culturable Psychrotrophic Bacterial Communities in Raw Milk and Their Proteolytic and Lipolytic Traits. Appl. Environ. Microbiol. 2007, 73, 7162–7168. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, N.R.; Dissanayake, M.; Bolge, G.; Palombo, E.A.; Yeager, T.R.; Datta, N. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int. Dairy J. 2016, 57, 80–90. [Google Scholar] [CrossRef]
- Scheldeman, P.; Herman, L.; Foster, S.; Heyndrickx, M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 2006, 101, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.H.; Trmčić, A.; Hsieh, T.-H.; Boor, K.J.; Wiedmann, M. The Evolving Role of Coliforms as Indicators of Unhygienic Processing Conditions in Dairy Foods. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.E.; Erten, E.S.; Maddi, N.; Graham, T.E.; Larkin, J.W.; Blodgett, R.J.; Schlesser, J.E.; Reddy, R.M. Detection and enumeration of four foodborne pathogens in raw commingled silo milk in the United States. J. Food Prot. 2012, 75, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, D.J.; Groves, E.; Donnelly, C.W. Low incidence of foodborne pathogens of concern in raw milk utilized for farmstead cheese production. J. Food Prot. 2008, 71, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Rapid Alert System for Food and Feed. Available online: https://ec.europa.eu/food/safety/rasff_en (accessed on 3 September 2017).
- Van Asselt, E.D.; van der Fels-Klerx, H.J.; Marvin, H.J.P.; van Bokhorst-van de Veen, H.; Groot, M.N. Overview of Food Safety Hazards in the European Dairy Supply Chain. Compr. Rev. Food Sci. Food Saf. 2017, 16, 59–75. [Google Scholar] [CrossRef]
- McDaniel, C.J.; Cardwell, D.M.; Moeller, R.B.; Gray, G.C. Humans and Cattle: A Review of Bovine Zoonoses. Vector Borne Zoonotic Dis. 2014, 14, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.; Drummond, N.; Murphy, M.; Butler, F.; Buckley, J.; Jordan, K. A case of bovine raw milk contamination with Listeria monocytogenes. Ir. Vet. J. 2012, 65, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, M.; Fanning, S.; Whyte, P. The Safety of Raw Liquid Milk. In Milk Processing and Quality Management; Tamine, A.Y., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 139–167. [Google Scholar]
- Dhanashekar, R.; Akkinepalli, S.; Nellutla, A. Milk-borne infections. An analysis of their potential effect on the milk industry. Germs 2012, 2, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.R.; Ball, H.J.; Rowe, M.T. Incidence of Mycobacterium paratuberculosis in bulk raw and commercially pasteurized cows’ milk from approved dairy processing establishments in the United Kingdom. Appl. Environ. Microbiol. 2002, 68, 2428–2435. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Food and Agriculture Organisation and Codex Alimentarius Commission. Principles and Guidelines for the Conduct of Microbiological Risk Management (MRM). 2007. Available online: https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjsrbf7lYbXAhVBbhQKHQ0fD7YQFggyMAA&url=http%3A%2F%2Fwww.fao.org%2Finput%2Fdownload%2Fstandards%2F10741%2FCXG_063e.pdf&usg=AOvVaw16HPgG3XDCD5t7PyRqEt9B (accessed on 8 October 2017).
- Food Standards Australia New Zealand (FSANZ). Microbiological Risk Assessment of Raw Cow Milk. Risk Assessment Microbiology Section. December 2009. Available online: https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjigfTNnevWAhXKEVAKHc8ECMMQFggnMAA&url=https%3A%2F%2Fwww.foodstandards.gov.au%2Fcode%2Fproposals%2Fdocuments%2Fp1007%2520ppps%2520for%2520raw%2520milk%25201ar%2520sd1%2520cow%2520milk%2520risk%2520assessment.pdf&usg=AOvVaw0XYHQ27rcYxv4ld8jkBqkH (accessed on 12 October 2017).
- Soboleva, T. Assessment of the Microbiological Risks Associated with the Consumption of Raw Milk. Ministry for Primary Industries (MPI) Technical Paper No: 2014/12. June 2013. Available online: https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjG5sfesevWAhXGaVAKHXycCFkQFggnMAA&url=https%3A%2F%2Fwww.mpi.govt.nz%2Fdmsdocument%2F1118-assessment-of-the-microbiological-risks-associated-with-the-consumption-of-raw-milk&usg=AOvVaw3Wmo0Ycg1gk84D9lavhx6n (accessed on 2 October 2017).
- Heidinger, J.C.; Winter, C.K.; Cullor, J.S. Quantitative microbial risk assessment for Staphylococcus aureus and Staphylococcus enterotoxin A in raw milk. J. Food Prot. 2009, 72, 1641–1653. [Google Scholar] [CrossRef] [PubMed]
- Latorre, A.A.; Pradhan, A.K.; Van Kessel, J.A.; Karns, J.S.; Boor, K.J.; Rice, D.H.; Mangione, K.J.; Gröhn, Y.T.; Schukken, Y.H. Quantitative risk assessment of listeriosis due to consumption of raw milk. J. Food Prot. 2011, 74, 1268–1281. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Pavlis, A.; Nychas, G.-J.E.; Xanthiakos, K. Probabilistic Model for Listeria monocytogenes Growth during Distribution, Retail Storage and Domestic Storage of Pasteurized Milk. Appl. Environ. Microbiol. 2010, 76, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Serraino, A.; Bonilauri, P.; Ostanello, F.; Daminelli, P.; Finazzi, G.; Losio, M.N.; Marchetti, G.; Liuzzo, G.; Zanoni, R.G.; et al. Quantitative risk assessment of verocytotoxin-producing Escherichia coli O157 and Campylobacter jejuni related to consumption of raw milk in a province in Northern Italy. J. Food Prot. 2012, 75, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Bonilauri, P.; Albonetti, S.; Amatiste, S.; Arrigoni, N.; Bianchi, M.; Bertasi, B.; Bilei, S.; Bolzoni, G.; Cascone, G.; et al. Quantitative risk assessment of human salmonellosis and listeriosis related to the consumption of raw milk in Italy. J. Food Prot. 2015, 78, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Bonilauri, P.; Amatiste, S.; Arrigoni, N.; Bianchi, M.; Losio, M.N.; Bilei, S.; Cascone, G.; Comin, D.; Daminelli, P.; et al. Human campylobacteriosis related to the consumption of raw milk sold by vending machines in Italy: Quantitative risk assessment based on official controls over four years. Prev. Vet. Med. 2015, 121, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, F.; Bonilauri, P.; Piva, S.; Scavia, G.; Amatiste, S.; Bianchi, D.M.; Losio, M.N.; Bilei, S.; Cascone, G.; Comin, D.; et al. Paediatric HUS Cases Related to the Consumption of Raw Milk Sold by Vending Machines in Italy: Quantitative Risk Assessment Based on Escherichia coli O157 Official Controls over 7 years. Zoonoses Pub. Health 2016, 64, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Crotta, M.; Paterlini, F.; Rizzi, R.; Guitian, J. Consumers’ behavior in quantitative microbial risk assessment for pathogens in raw milk: Incorporation of the likelihood of consumption as a function of storage time and temperature. J. Dairy Sci. 2016, 99, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Crotta, M.; Rizzi, R.; Varisco, G.; Daminelli, P.; Cunico, E.C.; Luini, M.; Grober, H.U.; Paterlini, F.; Guitian, J. Multiple-Strain Approach and Probabilistic Modeling of Consumer Habits in Quantitative Microbial Risk Assessment: A Quantitative Assessment of Exposure to Staphylococcal Enterotoxin A in Raw Milk. J. Food Prot. 2016, 79, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Barker, G.C.; Goméz-Tomé, N. A risk assessment model for enterotoxigenic Staphylococcus aureus in pasteurized milk: A potential route to source-level inference. Risk Anal. Off. Publ. Soc. Risk Anal. 2013, 33, 249–269. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. Standard CAC-RCP57-2004: Code on Hygienic Practice for Milk and Milk Products. 2004. Available online: http://codexalimentarius.org (accessed on 31 August 2017).
- Kelly, A.L.; O’Shea, N. Plant and Equipment—Pasteurizers, Design and Operation. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Tamime, A.Y. Milk Processing and Quality Management; Wiley-Blackwell: Oxford, UK, 2009. [Google Scholar]
- Ozer, B.; Akdemir-Evrendilek, G. Dairy Microbiology and Biochemistry: Recent Developments; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kelly, A.; Datta, N.; Deeth, H. Thermal Processing of Dairy Products. In Thermal Food Processing: New Technologies and Quality Issues. Contemporary Food Engineering; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 273–306. [Google Scholar]
- Fernandes, R. Microbiology Handbook: Dairy Products; Leatherhead Pub.: Leatherhead, UK; Royal Society of Chemistry: Cambridge, UK, 2009. [Google Scholar]
- Papademas, P.; Bintsis, T. Food Safety Management Systems (FSMS) in the Dairy Industry: A Review. Int. J. Dairy Technol. 2010, 63, 489–503. [Google Scholar] [CrossRef]
- Rall, V.L.M.; Vieira, F.P.; Rall, R.; Vieitis, R.L.; Fernandes, A.; Candeias, J.M.G.; Cardoso, K.F.G.; Araújo, J.P. PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 2008, 132, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Ryser, E.T. Safety of Dairy Products. In Microbial Food Safety; Food Science Text Series; Springer: New York, NY, USA, 2012; pp. 127–145. [Google Scholar]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Braunig, J.; Hall, P. Milk and dairy products. In Micro-Organisms in Foods; Roberts, T.A., Cordier, J.L., Gram, L., Tompkin, R.B., Pitt, J.I., Gorris, L.G.M., Swanson, K.M.J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; pp. 643–715. [Google Scholar]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De Reu, K.; Govaris, A.; et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 2013, 162, 190–212. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Mossel, B.L.; Intaraphan, T.; Deeth, H.C. Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity. J. Food Prot. 2003, 66, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P.; Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Braun-Fahrländer, C.; Von Mutius, E. Can farm milk consumption prevent allergic diseases? Clin. Exp. Allergy 2011, 41, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Bos, C.; Léonil, J.; Airinei, G.; Luengo, C.; Daré, S.; Benamouzig, R.; Fouillet, H.; Fauquant, J.; Tomé, D.; et al. Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am. J. Clin. Nutr. 2006, 84, 1070–1079. [Google Scholar] [PubMed]
- Lacroix, M.; Bon, C.; Bos, C.; Léonil, J.; Benamouzig, R.; Luengo, C.; Fauquant, J.; Tomé, D.; Gaudichon, C. Ultra high temperature treatment but not pasteurization, affects the postprandial kinetics of milk proteins in humans. J. Nutr. 2008, 138, 2342–2347. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; McSweeney, P.L.H. Dairy Chemistry and Biochemistry; Chapman and Hall: London, UK, 1998. [Google Scholar]
- Pestana, J.M.; Gennari, A.; Wissmann Monteiro, B.; Neutzling Lehn, D.; Volken de Souza, C.F. Effects of Pasteurization and Ultra-High Temperature Processes on Proximate Composition and Fatty Acid Profile in Bovine Milk. Am. J. Food Technol. 2015, 10, 265–272. [Google Scholar] [CrossRef]
- Ijaz, N. Epidemiological Hazard Characterization and Risk Assessment for Unpasteurized Milk Consumption: United States, 1998–2010; Working Paper; 2013. Available online: https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjyyaSpyJ_XAhVJ56QKHeH5DJwQFggnMAA&url=http%3A%2F%2Fwww.bccdc.ca%2FHealth-Professionals-Site%2F_layouts%2F15%2FDocIdRedir.aspx%3FID%3DBCCDC-291-107&usg=AOvVaw0cqohwDQiqIKMyh80gd24B (accessed on 6 November 2017).
- Lejeune, J.; Rajala-Schults, P.J. Unpasteurized milk: A continued public health threat. Clin. Infect. Dis. 2009, 48, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, L.E.; Brett, J.; Kelton, D.; Majowicz, S.E.; Snedeker, K.; Sargeant, J.M. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 2011, 74, 1814–1832. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. Handbook of Milk Composition; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Canada Department of Justice. Food and Drug Regulations, Part D, Division 3. Addition of Vitamins, Mineral Nutrients or Amino Acids to Foods. 2017. Available online: http://laws-lois.justice.gc.ca/eng/regulations/c.r.c.,_c._870/page-144.html (accessed on 22 October 2017).
- European Parliament; Council of the European Union. Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off. J. Eur. Union 2006, L 404, 26–38. [Google Scholar]
- Law, D.; Conklin, J.; Pimentel, M. Lactose intolerance and the role of the lactose breath test. Am. J. Gastroenterol. 2010, 105, 1726–1728. [Google Scholar] [CrossRef] [PubMed]
- Vuorisalo, T.; Arjamaa, O.; Vasemägi, A.; Taavitsainen, J.-P.; Tourunen, A.; Saloniemi, I. High lactose tolerance in North Europeans: A result of migration, not in situ milk consumption. Perspect. Biol. Med. 2012, 55, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Mummah, S.; Oelrich, B.; Hope, J.; Vu, Q.; Gardner, C.D. Effect of raw milk on lactose intolerance: A randomized controlled pilot study. Ann. Fam. Med. 2014, 12, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Brick, T.; Schober, Y.; Böcking, C.; Pekkanen, J.; Genuneit, J.; Loss, G.; Dalphin, J.-C.; Riedler, J.; Lauener, R.; Nockher, W.A.; et al. ω-3 fatty acids contribute to the asthma-protective effect of unprocessed cow’s milk. J. Allergy Clin. Immunol. 2016, 137, 1699–1706.e13. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Pearce, N.; Douwes, J. The hygiene hypothesis in allergy and asthma: An update. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Braman, S.S. The global burden of asthma. Chest 2006, 130, 4S–12S. [Google Scholar] [CrossRef] [PubMed]
- Strachan, D.P. Hay fever, hygiene and household size. BMJ 1989, 299, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, M.; Terho, E.O.; Helenius, H.; Koskenvuo, M. Farm environment in childhood prevents the development of allergies. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2000, 30, 201–208. [Google Scholar] [CrossRef]
- Riedler, J.; Eder, W.; Oberfeld, G.; Schreuer, M. Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin. Exp. Allergy 2000, 30, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Von Ehrenstein, O.S.; Von Mutius, E.; Illi, S.; Baumann, L.; Böhm, O.; von Kries, R. Reduced risk of hay fever and asthma among children of farmers. Clin. Exp. Allergy 2000, 30, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Riedler, J.; Braun-Fahrländer, C.; Eder, W.; Schreuer, M.; Waser, M.; Maisch, S.; Carr, D.; Schierl, R.; Nowak, D.; von Mutius, E.; et al. Exposure to farming in early life and development of asthma and allergy: A cross-sectional survey. Lancet Lond. Engl. 2001, 358, 1129–1133. [Google Scholar] [CrossRef]
- Braun-Fahrländer, C.; Riedler, J.; Herz, U.; Eder, W.; Waser, M.; Grize, L.; Maisch, S.; Carr, D.; Gerlach, F.; Bufe, A.; et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 2002, 347, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Naleway, A.L. Asthma and Atopy in Rural Children: Is Farming Protective? Clin. Med. Res. 2004, 2, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Waser, M.; Michels, K.B.; Bieli, C.; Flöistrup, H.; Pershagen, G.; von Mutius, E.; Ege, M.; Riedler, J.; Schram-Bijkerk, D.; Brunekreef, B.; et al. Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2007, 37, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Von Mutius, E.; Vercelli, D. Farm living: Effects on childhood asthma and allergy. Nat. Rev. Immunol. 2010, 10, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.A. Farming-Associated Environmental Exposures and Atopic Diseases. Ann. Allergy Asthma Immunol. 2012, 109, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Chrischilles, E.; Ahrens, R.; Kuehl, A.; Kelly, K.; Thorne, P.; Burmeister, L.; Merchant, J. Asthma prevalence and morbidity among rural Iowa schoolchildren. J. Allergy Clin. Immunol. 2004, 113, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wickens, K.; Lane, J.M.; Fitzharris, P.; Siebers, R.; Riley, G.; Douwes, J.; Smith, T.; Crane, J. Farm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy 2002, 57, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Perkin, M.R.; Strachan, D.P. Which aspects of the farming lifestyle explain the inverse association with childhood allergy? J. Allergy Clin. Immunol. 2006, 117, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Ege, M.J.; Frei, R.; Bieli, C.; Schram-Bijkerk, D.; Waser, M.; Benz, M.R.; Weiss, G.; Nyberg, F.; van Hage, M.; Pershagen, G.; et al. Not all farming environments protect against the development of asthma and wheeze in children. J. Allergy Clin. Immunol. 2007, 119, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Loss, G.; Depner, M.; Ulfman, L.H.; van Neerven, R.J.J.; Hose, A.J.; Genuneit, J.; Karvonen, A.M.; Hyvärinen, A.; Kaulek, V.; Roduit, C.; et al. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. J. Allergy Clin. Immunol. 2015, 135, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Radon, K.; Ehrenstein, V.; Praml, G.; Nowak, D. Childhood visits to animal buildings and atopic diseases in adulthood: An age-dependent relationship. Am. J. Ind. Med. 2004, 46, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Ege, M.J.; Herzum, I.; Büchele, G.; Krauss-Etschmann, S.; Lauener, R.P.; Roponen, M.; Hyvärinen, A.; Vuitton, D.A.; Riedler, J.; Brunekreef, B.; et al. Prenatal exposure to a farm environment modifies atopic sensitization at birth. J. Allergy Clin. Immunol. 2008, 122, 407–412.e4. [Google Scholar] [CrossRef] [PubMed]
- De Alwis, A.A.P.; Fryer, P.J. The use of direct resistance heating in the food industry. J. Food Eng. 1990, 11, 3–27. [Google Scholar] [CrossRef]
- Duygu, B.; Ümit, G. Application of Ohmic Heating System in Meat Thawing. Procedia Soc. Behav. Sci. 2015, 195, 2822–2828. [Google Scholar] [CrossRef]
- Guida, V.; Ferrari, G.; Pataro, G.; Chambery, A.; Di Maro, A.; Parente, A. The Effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT Food Sci. Technol. 2013, 53, 569–579. [Google Scholar] [CrossRef]
- Stancl, J.; Zitny, R. Milk fouling at direct ohmic heating. J. Food Eng. 2010, 99, 437–444. [Google Scholar] [CrossRef]
- Varghese, K.S.; Pandey, M.C.; Radhakrishna, K.; Bawa, A.S. Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol. 2014, 51, 2304–2317. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Vincente, A.A. Novel technologies for Milk Processing. In Engineering Aspects of Milk and Dairy Products; Taylor & Francis: Boca Raton, FL, USA, 2010; pp. 155–174. [Google Scholar]
- Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K.-H.; Knorr, D.; Vogel, R.F.; Bandick, N.; Kulling, S.; Heinz, V.; et al. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci. Technol. 2016, 55, 84–97. [Google Scholar] [CrossRef]
- Tucker, G. Commercially successful applications. In Ohmic Heating in Food Processing; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4200-7108-5. [Google Scholar]
- Cappato, L.P.; Ferreira, M.V.S.; Guimaraes, J.T.; Portela, J.B.; Costa, A.L.R.; Freitas, M.Q.; Cunha, R.L.; Oliveira, C.A.F.; Mercali, G.D.; Marzack, L.D.F.; et al. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol. 2017, 62, 104–112. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Choi, H.K.; Marth, E.H.; Vasavada, P.C. Use of microwave energy to inactive Listeria monocytogenes in milk. Milchwissenschaft 1993, 48, 200–203. [Google Scholar]
- Choi, H.K.; Marth, E.H.; Vasavada, P.C. Use of microwave energy to inactive Yersinia enterocolitica and Campylobacter jejuni in milk. Milchwissenschaft 1993, 48, 134–136. [Google Scholar]
- Galuska, P.J.; Kolarik, R.W.; Vasavada, P.C.; Marth, E.H. Inactivation of Listeria monocytogenes by microwave treatment. Dairy Sci. 1989, 72, 139. [Google Scholar]
- Khalil, H.; Villota, R. Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J. Food Prot. 1988, 51, 181–186. [Google Scholar] [CrossRef]
- Lopez-Fandino, R.; Villamiel, M.; Corzo, N.; Olano, A. Assessment of the thermal-treatment of milk during continuous microwave and conventional heating. J. Food Prot. 1996, 59, 889–892. [Google Scholar] [CrossRef]
- Merin, U.; Rosenthal, I. Pasteurisation of milk by microwave irradiation. Milchwissenschaft 1984, 39, 643–644. [Google Scholar]
- Stearns, G.; Vasavada, P.C. Effect of microwave processing on quality of milk. J. Food Prot. 1986, 49, 853–858. [Google Scholar]
- Villamiel, M.; López-Fandiňo, R.; Corzo, N.; Martinez-Castro, I.; Olano, A. Effects of continuous-flow microwave treatment on chemical and microbiological characteristics of milk. Z. Lebensm. Unters. Forch. 1996, 201, 15–18. [Google Scholar] [CrossRef]
- Villamiel, M.; López-Fandiňo, R.; Olano, A. Microwave pasteurisation in a continuous flow unit. Shelf life of cow’s milk. Milchwissenschaft 1996, 51, 674–677. [Google Scholar]
- Ryynänen, S.; Tuorila, H.; Hyvönen, L. Perceived temperature effects on microwave heated meals and meal components. Food Serv. Technol. 2001, 1, 141–148. [Google Scholar] [CrossRef]
- Mishra, V.K.; Ramchandran, L. Novel Thermal Methods in Dairy Processing. In Emerging Dairy Processing Technologies: Opportunities for the Dairy Industry; Datta, N., Tomasula, P.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 33–70. [Google Scholar]
- Knutson, K.M.; Marth, E.H.; Wagner, M.K. Use of microwave ovens to pasteurize milk. J. Food Prot. 1988, 51, 715–719. [Google Scholar] [CrossRef]
- Rahman, M.S. Handbook of Food Preservation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Sierra, I.; Vidal-Valverde, C.; Olano, A. The effects of continuous flow microwave treatment and conventional heating on the nutritional value of milk as shown by influence on vitamin B1 retention. Eur. Food Res. Technol. 1999, 209, 352–354. [Google Scholar] [CrossRef]
- Bai, Y.; Saren, G.; Huo, W. Response surface methodology (RSM) in evaluation of the vitamin C concentrations in microwave treated milk. J. Food Sci. Technol. 2015, 52, 4647–4651. [Google Scholar] [CrossRef] [PubMed]
- Bendicho, S.; Barbosa-Cánovas, G.V.; Martı́n, O. Milk processing by high intensity pulsed electric fields. Trends Food Sci. Technol. 2002, 13, 195–204. [Google Scholar] [CrossRef]
- Buckow, R.; Chandry, P.S.; Ng, S.Y.; McAuley, C.M.; Swanson, B.G. Opportunities and challenges in pulsed electric field processing of dairy products. Int. Dairy J. 2014, 34, 199–212. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Fernández, S.; Esquivel, H.; Dunne, P.C.; Barbosa-Cánovas, G.V. Milk Processed by Pulsed Electric Fields: Evaluation of Microbial Quality, Physicochemical Characteristics and Selected Nutrients at Different Storage Conditions. J. Food Sci. 2011, 76, S289–S299. [Google Scholar] [CrossRef] [PubMed]
- McAuley, C.M.; Singh, T.K.; Haro-Maza, J.F.; Williams, R.; Buckow, R. Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innov. Food Sci. Emerg. Technol. 2016, 38, 365–373. [Google Scholar] [CrossRef]
- Buckow, R.; Semrau, J.; Sui, Q.; Wan, J.; Knoerzer, K. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing. Biotechnol. Prog. 2012, 28, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Oey, I.; Bremer, P.; Everett, D.W. Microbiological and enzymatic activity of bovine whole milk treated by pulsed electric fields. Int. J. Dairy Technol. 2017. [Google Scholar] [CrossRef]
- Voigt, D.D.; Kelly, A.L.; Huppertz, T. High-Pressure Processing of Milk and Dairy Products. In Emerging Dairy Processing Technologies—Opportunities for the Dairy Industry; Datta, N., Tomasula, P.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 71–92. [Google Scholar]
- Evrendilek, G. Non-Thermal Processing of Milk and Milk Products for Microbial Safety. In Dairy Microbiology and Biochemistry; CRC Press: Boca Raton, FL, USA, 2014; pp. 322–355. [Google Scholar]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
- Villamiel, M.; Schutyser, M.A.I.; De Jong, P. Novel Methods of Milk Processing. In Milk Processing and Quality Management; Tamine, A.Y., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 205–236. [Google Scholar]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. High pressure-induced denaturation of alpha-lactalbumin and beta-lactoglobulin in bovine milk and whey: A possible mechanism. J. Dairy Res. 2004, 71, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Tomasula, P.M.; Bonnaillie, L.M. Crossflow Microfiltration in the Dairy Industry. In Emerging Dairy Processing Technologies—Opportunities for the Dairy Industry; Datta, N., Tomasula, P.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 1–31. [Google Scholar]
- Zisu, B.; Chandrapala, J. High Power Ultrasound Processing in Milk and Dairy Products. In Emerging Dairy Processing Technologies—Opportunities for the Dairy Industry; Datta, N., Tomasula, P.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 149–180. [Google Scholar]
- Villamiel, M.; de Jong, P. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins and native enzymes of milk. J. Agric. Food Chem. 2000, 48, 472–478. [Google Scholar] [CrossRef] [PubMed]
Lactic Acid Bacteria | Psychrotrophs | Fungi | |||||||
---|---|---|---|---|---|---|---|---|---|
Lactococcus spp. | Streptococcus spp. | Lactobacillus spp. | Leuconostoc spp. | Propionibacterium spp. | Enterococcus spp. | Gram Positive | Gram Negative | Yeasts | Molds |
L. lactis spp. cremoris | S. agalactiae | L. acidophilus | L. mesenteroides | P. acidipropionici | E. durans | Arthrobacter spp. | Achromobacter spp. | Candida spp. C. sake C. parapsilosis C. inconspicua | Aspergillus spp. |
L. lactis spp. lactis | S. bovis | L. brevis | L. pseudomesenteroides | P. freudenreichii | E. faecalis | Bacillus spp. | Acinetobacter spp. | Cryptococcus spp. C. curvatus C. carnescens C. victoriae | Fusarium spp. |
L. piscium | S. gysgalactiae | L. buchneri | P. jensenii | E. faecium | Bifidobacterium | Aeromonas spp. | Debaryomyces hansenii | Geotrichum spp. | |
L. raffinolactis | S. macedonicus | L. casei | P. thoenii | E. italicus | Brevibacterium | Alcaligenes spp. | Geotrichum spp. G. candidum G. catenulate | Mucor spp. | |
S. thermophilus | L. crispatus | E. mundtii | Chlostridium spp. | Chryseobacterium | Kluyveromyces spp. K. marxianus K. lactis | Penicillium spp. | |||
S. uberis | L. curvatus | Corynebacterium spp. | Enterobacter spp. | Pichia | Rhizomucor | ||||
L. fermentum | Microbacterium | Flavobacterium | Rhodotorula mucilaginosa | Rhizopus | |||||
L. gasseri | Micrococcus | Pseudomonas spp. | Torrubiella | ||||||
L. johnsonii | Serratia | Trichosporon spp. T. cutaneum T. lactis | |||||||
L. paracasei | |||||||||
L. pentosus | |||||||||
L. plantarum | |||||||||
L. reuteri | |||||||||
L. rhamnosus | |||||||||
L. sake |
Pathogen | Taxonomy | Morphology | Disease | Transmission Route | System Potentially Affected | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cardio Vascular | Cutaneous | Gastro Intestinal | Neurological | Ocular | Pulmonary | |||||
Brucella spp. | Bacteria | Gram (−) coccobacilli | Brucellosis | Cutaneous Ingestion Inhalation | x | x | x | x | x | x |
B. abortus | ||||||||||
B. melitensis | ||||||||||
Campylobacter spp. | Bacteria | Gram (−) corkscrew | Campylobacteriosis | Ingestion | x | x | x | |||
C. fetus | ||||||||||
C. jejuni | ||||||||||
C. burnetii | Bacteria | Gram (−) coccobacilli | Q fever | Ingestion Inhalation | x | x | x | x | ||
E. coli | Bacteria | Gram (−) bacilli | Hemolytic uremic syndrome Hemorrhagiccolitis | Ingestion Inhalation | x | x | x | |||
L. monocytogenes | Bacteria | Gram (+) bacilli | Listeriosis | Ingestion Cutaneous | x | x | x | x | x | |
Mycobacterium spp. | Bacteria | No Gram classification bacilli | Tubercolosis | Cutaneous Inhalation Ingestion | x | x | x | x | ||
M. tubercolosis | ||||||||||
M. bovis | ||||||||||
Salmonella spp. | Bacteria | Gram (−) bacilli | Salmonellosis | Ingestion | x | |||||
Shigella spp. | Bacteria | Gram (−) bacilli | Shigellosis | Ingestion | x | x | x | |||
Staphylococcus spp. | Bacteria | Gram (+) staphylococci | Staphylococcal disease | Cutaneous Inhalation Ingestion | x | x | x | x | x | |
Streptococcus spp. | Bacteria | Gram (+) streptococci | Toxic shock syndrome | Cutaneous Inhalation Ingestion | x | x | x | x | x | |
Yersinia spp. | Bacteria | Gram (−) bacilli | Yersiniosis | Cutaneous Inhalation | x | x | x | x | x | |
Y. pseudotubercolosis | ||||||||||
Y. enterocolotica |
Reference | Country | Scenarios under Consideration | Hazards | ||||
---|---|---|---|---|---|---|---|
Campylobacter spp. | L. monocytogenes | Salmonella spp. | S. aureus Staphylococcus enterotoxin A | STEC | |||
[40] | Australia | Farm gate consumption Off-farm sale Sale at retail outlets | √ | √ | √ | - | √ |
[41] | New Zealand | Farm gate consumption Farm gate sale Off-farm sale Sale at retail outlets | √ | √ | √ | - | √ |
[42] | United States | Pathogen growth and staphilococcal enterotoxin A production scenarios Storage conditions (various times and temperatures) | - | - | - | √ | - |
[43] | United States | Farm gate consumption Off-farm sale Sale at retail outlets | - | √ | - | - | - |
[45] | Italy | Storage scenario (best and worst storage conditions) | √ (C. jejuni) | - | - | - | √ |
[46] | Italy | Storage scenario (best and worst storage conditions) | - | √ | √ | - | - |
[47] | Italy | Storage scenario (best and worst storage conditions) Boiling and not boiling milk | √ (C. jejuni) | - | - | - | - |
[48] | Italy | Storage scenario (best and worst storage conditions) Boiling and not boiling milk | - | - | - | - | √ |
[50] | Italy | Pathogenity of multiple strains of a single pathogen Consumer behavior at household level | - | - | - | √ | - |
Heating Treatment | Heating Conditions | Milk Category | Shelf-Life and Storage Conditions | Microbiological Effect | Nutritional Effect | Organoleptic Effect |
---|---|---|---|---|---|---|
HTST pasteurization | 72 °C for 15 s (commonly 75 °C for 20 s) | Pasteurized milk | Refrigerated conditions (<7 °C for 3–21 days based on raw milk quality) | Inactivation of pathogens (included M. tuberculosis), molds, yeasts and most bacteria (not all vegetative bacteria are killed). |
| No heating flavors |
High-temperature pasteurization | ≥85 °C for 20 s (usually 115–120 °C for 2–5 s) | High-pasteurized milk | Refrigerated conditions (<7 °C for 45–60 days based on raw milk quality) |
|
| Cooked flavor |
UHT treatment | 135–150 °C for 1–4 s (commonly >140 °C for 5 s) | UHT milk | Non-refrigerated conditions (<32 °C) for 3–12 months |
|
| Cooked and ketone flavor, browning |
In-bottle sterilization | 105–120 °C for 20–40 min (commonly 110 °C for 30 min) | Sterilized milk | Non-refrigerated conditions (<32 °C) for 8–12 months |
|
| Sterilized-caramelized flavor and browning |
Microorganisms | Survival to Pasteurization | Survival to UHT |
---|---|---|
S. aureus | √ (enterotoxins) | √ (enterotoxins) |
C. jejuni | × | × |
Salmonella spp. | × | × |
E. coli | × | × |
L. monocytogenes | × | × |
Y. enterocolitica | × | × |
Mycobacterium avium subsp. paratubercolosis | √/× | × |
M. bovis | × | × |
B. cereus | √ (spores) | × |
Clostridium spp. | √ (spores) | √ (spores) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages 2017, 3, 54. https://doi.org/10.3390/beverages3040054
Melini F, Melini V, Luziatelli F, Ruzzi M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages. 2017; 3(4):54. https://doi.org/10.3390/beverages3040054
Chicago/Turabian StyleMelini, Francesca, Valentina Melini, Francesca Luziatelli, and Maurizio Ruzzi. 2017. "Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality" Beverages 3, no. 4: 54. https://doi.org/10.3390/beverages3040054
APA StyleMelini, F., Melini, V., Luziatelli, F., & Ruzzi, M. (2017). Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages, 3(4), 54. https://doi.org/10.3390/beverages3040054