Sensory Analysis of Post-Exercise Coffee or Cocoa Milk Beverages for Endurance Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beverage Preparation
2.2. Sampling and Inclusion Criteria
2.3. Sensory Analysis
2.4. Acceptance Test
2.5. Descriptive Beverage Analysis
2.6. Ethics Declaration
3. Results
3.1. Beverages Composition
3.2. Athletes’ Beverages Consumption Habits
3.3. Acceptance Analysis
3.4. Descriptive Analysis
The post-workout coffee milk beverage has a creamy and homogeneous appearance; coffee, cappuccino, and sweet aroma; sweet and tasty flavor; as well as a creamy texture.
The post-workout cocoa milk beverage has a full-bodied, brown, and creamy appearance; chocolate and cocoa aroma and taste; as well as a full-bodied and creamy texture.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, D.R. Nutrition to support recovery from endurance exercise: Optimal carbohydrate and protein replacement. Curr. Sports Med. Rep. 2015, 14, 294–300. [Google Scholar]
- Food Guide for the Brazilian Population (Guia Alimentar para População Brasileira), 2nd ed.; Technical Report; Ministério da Saúde. Secretaria de Atenção à Saúde; Departamento de Atenção Básica: Brasília, Brazil, 2014. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2ed.pdf (accessed on 25 February 2019). [CrossRef] [PubMed] [Green Version]
- Pritchett, K.; Bishop, P.; Pritchett, R.; Green, M.; Katica, C. Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl. Physiol. Nutr. Metab. 2009, 34, 1017–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchett, K.; Pritchett, R. Chocolate milk: A post-exercise recovery beverage for endurance sports. Med. Sport Sci. 2012, 59., 127–134. [Google Scholar] [PubMed]
- Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Doerner, P.G., III; Wang, B.; Liao, Y.H.; Kammer, L.; Liu, Y.; Hwang, J.; Dessard, B.M.; et al. Postexercise carbohydrate–protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J. Strength Cond. Res. 2011, 59, 1210–1224. [Google Scholar] [CrossRef]
- Kammer, L.; Ding, Z.; Wang, B.; Hara, D.; Liao, Y.H.; Ivy, J.L. Cereal and nonfat milk support muscle recovery following exercise. J. Int. Soc. Sports Nutr. 2009, 6, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Lunn, W.R.; Pasiakos, S.M.; Colletto, M.R.; Karfonta, K.E.; Carbone, J.W.; Anderson, J.M.; Rodriguez, N.R. Chocolate milk and endurance exercise recovery: Protein balance, glycogen, and performance. Med. Sci. Sports Exerc. 2012, 44, 682–691. [Google Scholar] [CrossRef]
- Karp, J.R.; Johnston, J.D.; Tecklenburg, S.; Mickleborough, T.D.; Fly, A.D.; Stager, J.M. Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.; Morris, P.; Stevenson, E. Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Appl. Physiol. Nutr. Metab. 2009, 34, 78–82. [Google Scholar] [CrossRef]
- Spaccarotella, K.J.; Andzel, W.D. Building a beverage for recovery from endurance activity: A review. J. Strength Cond. Res. 2011, 25, 3198–3204. [Google Scholar] [CrossRef]
- Amiri, M.; Ghiasvand, R.; Kaviani, M.; Forbes, S.C.; Salehi-Abargouei, A. Chocolate milk for recovery from exercise: A systematic review and meta-analysis of controlled clinical trials. Eur. J. Clin. Nutr. 2019, 73, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.; Holt, S.H.; Jong, V.D.; Petocz, P. Cocoa powder increases postprandial insulinemia in lean young adults. J. Nutr. 2003, 133, 3149–3152. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Godin, J.P.; Chou, C.J.; Grathwohl, D.; Ross, A.B.; Cooper, K.A.; Williamson, G.; Actis-Goretta, L. The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise. Appl. Physiol. Nutr. Metab. 2014, 39, 173–182. [Google Scholar] [CrossRef] [PubMed]
- McBrier, N.M.; Vairo, G.L.; Bagshaw, D.; Lekan, J.M.; Bordi, P.L.; Kris-Etherton, P.M. Cocoa-based protein and carbohydrate drink decreases perceived soreness after exhaustive aerobic exercise: A pragmatic preliminary analysis. J. Strength Cond. Res. 2010, 24, 2203–2210. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.E.; Paiva, C.L.; Amato, A.A.; Lofrano-Porto, A.; Wassell, S.; Bluck, L.J.; Dórea, J.G.; da Costa, T.H. Decaffeinated coffee improves insulin sensitivity in healthy men. Br. J. Nutr. 2018, 119, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 93, 17. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G.; da Costa, T.H. Is coffee a functional food? Br. J. Nutr. 2005, 93, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Loureiro, L.M.; Reis, C.E.; da Costa, T.H. Effects of coffee components on muscle glycogen recovery: A systematic review. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 284–293. [Google Scholar] [CrossRef]
- Talanian, J.L.; Spriet, L.L. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.; Higham, D.; Close, G.L.; Morton, J.P. The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 410–416. [Google Scholar] [CrossRef]
- Lane, S.C.; Areta, J.L.; Bird, S.R.; Coffey, V.G.; Burke, L.M.; Desbrow, B.; Karagounis, L.G.; Hawley, J.A. Caffeine ingestion and cycling power output in a low or normal muscle glycogen state. Med. Sci. Sports Exerc. 2013, 45, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Peschek, K.; Pritchett, R.; Bergman, E.; Pritchett, K. The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients 2014, 17, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [PubMed]
- Burke, L.M.; van Loon, L.J.; Hawley, J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017, 122, 1055–1067. [Google Scholar] [CrossRef] [Green Version]
- Hough, G.; Wakeling, I.; Mucci, A.; Chambers, E., IV; Gallardo, I.M.; Alves, L.R. Number of consumers necessary for sensory acceptability tests. Food Qual. Prefer. 2006, 17, 522–526. [Google Scholar] [CrossRef]
- Dooley, L.; Lee, Y.S.; Meullenet, J.F. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Qual. Prefer. 2010, 21, 394–401. [Google Scholar] [CrossRef]
- von Borries, G.; Bassinello, P.Z.; Rios, E.S.; Koakuzu, S.N.; Carvalho, R.N. Prediction models of rice cooking quality. Cereal Chem. 2018, 95, 158–166. [Google Scholar] [CrossRef]
- Kelly, G. The Psychology of Personal Constructs; Routledge: London, UK, 2020. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Niseteo, T.; Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Budečlt, M. Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chem. 2012, 4, 1870–1877. [Google Scholar] [CrossRef]
- Tabernero, M.; Serrano, J.; Saura-Calixto, F. The antioxidant capacity of cocoa products: Contribution to the Spanish diet. Int. J. Food Sci. Technol. 2006, 41, 28–32. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons: London, UK, 2013. [Google Scholar]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Rios, L. Triathlon Membership Survey Report. 2016. Available online: https://www.teamusa.org/USA-Triathlon/News/Articles-and-Releases/2017/December/18/USA-Triathlon-Membership-Survey-Report (accessed on 13 March 2019).
- Brasil. Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal No Brasil; Technical Report; Coordenação de Trabalho e Rendimento; IBGE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Sousa, A.G.; da Costa, T.H. Usual coffee intake in Brazil: Results from the National Dietary Survey. Br. J. Nutr. 2015, 113, 1615–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinnella, C.; Recchia, A.; Tuorila, H.; Monteleone, E. Individual astringency responsiveness affects the acceptance of phenol-rich foods. Appetite 2011, 66, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Cortese, M.; Sagratini, G.; Vittori, S. The influence of different types of preparation (espresso and brew) on coffee aroma and main bioactive constituents. Int. J. Food Sci. Nutr. 2015, 66, 505–513. [Google Scholar] [CrossRef]
- Grosch, W. Flavour of coffee. A review. Food/Nahrung 1998, 42, 344–350. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Schuster, J.; Mitchell, E.S. More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2019, 89, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Jalil, A.M.; Ismail, A. Polyphenols in cocoa and cocoa products: Is there a link between antioxidant properties and health? Molecules 2008, 13, 2190–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcantara, M.D.; Freitas-Sá, D.D. Rapid and versatile sensory descriptive methods—An updating of sensory science. [Metodologias sensoriais descritivas mais rápidas e versáteis–uma atualidade na ciência sensorial]. Braz. J. Food Technol. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
Coffe Based | Cocoa Based | |
---|---|---|
Beverage (500 mL) | Beverage (500 mL) | |
Carbohydrates(g) a | 85.5 | 90.0 |
Proteins(g) a | 21.0 | 25.0 |
Lipids(g) a | 0.5 | 3.0 |
Energy(kcal) | 430 | 485 |
Caffeine(mg) b | 100.0 | 5.0 |
Total Polyphenols(mg) c | 530 | 125 |
Atributes | Coffee | Cocoa | p-Value * |
---|---|---|---|
Homogeneous appearance | 0.460 | 0.190 | 0.000 |
Coffee aroma | 0.580 | 0.020 | 0.000 |
Sweet aroma | 0.410 | 0.210 | 0.001 |
Pleasant aroma | 0.440 | 0.250 | 0.003 |
Cappuccino aroma | 0.410 | 0.020 | 0.000 |
Sweeter flavor | 0.510 | 0.120 | 0.000 |
Tasty flavor | 0.580 | 0.320 | 0.000 |
Full-bodied appearance | 0.210 | 0.520 | 0.000 |
Brown appearance | 0.280 | 0.540 | 0.000 |
Chocolate aroma | 0.030 | 0.530 | 0.000 |
Cocoa aroma | 0.030 | 0.520 | 0.000 |
Chocolate flavor | 0.110 | 0.500 | 0.000 |
Cocoa flavor | 0.050 | 0.450 | 0.000 |
Full-bodied texture | 0.300 | 0.470 | 0.011 |
Attractive appearance | 0.360 | 0.210 | 0.014 |
Cream color appearance | 0.370 | 0.010 | 0.000 |
Ugly appearance | 0.010 | 0.170 | 0.000 |
Strong aroma | 0.020 | 0.270 | 0.000 |
Strong coffee flavor | 0.180 | 0.020 | 0.000 |
Whey protein flavor | 0.060 | 0.270 | 0.000 |
Mild flavor | 0.360 | 0.080 | 0.000 |
More bitter taste | 0.010 | 0.210 | 0.000 |
Chunky texture | 0.000 | 0.140 | 0.000 |
Watery texture | 0.190 | 0.040 | 0.001 |
Thick texture | 0.090 | 0.340 | 0.000 |
Foamy Appearance | 0.250 | 0.180 | 0.223 |
Creamy Appearance | 0.480 | 0.470 | 0.884 |
Mild aroma | 0.230 | 0.170 | 0.239 |
Foamy texture | 0.220 | 0.140 | 0.102 |
Creamy texture | 0.570 | 0.550 | 0.763 |
N = 100 athletes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, R.M.; Oliveira, L.d.L.d.; Loureiro, L.M.R.; von Borries, G.; da Costa, T.H.M. Sensory Analysis of Post-Exercise Coffee or Cocoa Milk Beverages for Endurance Athletes. Beverages 2020, 6, 61. https://doi.org/10.3390/beverages6040061
Teixeira RM, Oliveira LdLd, Loureiro LMR, von Borries G, da Costa THM. Sensory Analysis of Post-Exercise Coffee or Cocoa Milk Beverages for Endurance Athletes. Beverages. 2020; 6(4):61. https://doi.org/10.3390/beverages6040061
Chicago/Turabian StyleTeixeira, Rafael M., Lívia de L. de Oliveira, Laís M. R. Loureiro, George von Borries, and Teresa H. M. da Costa. 2020. "Sensory Analysis of Post-Exercise Coffee or Cocoa Milk Beverages for Endurance Athletes" Beverages 6, no. 4: 61. https://doi.org/10.3390/beverages6040061
APA StyleTeixeira, R. M., Oliveira, L. d. L. d., Loureiro, L. M. R., von Borries, G., & da Costa, T. H. M. (2020). Sensory Analysis of Post-Exercise Coffee or Cocoa Milk Beverages for Endurance Athletes. Beverages, 6(4), 61. https://doi.org/10.3390/beverages6040061