Seaweed-Based Bioplastics: Data Mining Ingredient–Property Relations from the Scientific Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Abstract Corpus
2.2. Data Pre-Processing
2.3. Bag of Words and Co-Occurrence Analysis
2.4. Masked Language Modelling
3. Results and Discussion
3.1. Word Frequencies for Ingredients and Properties
3.2. Co-Occurrence Visualization
3.3. Ingredients and Properties from Masked Language Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, R.C.; Moore, C.J.; vom Saal, F.S.; Swan, S.H. Plastics, the environment and human health: Current consensus and future trends. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Patel, M.K. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Aleksanyan, K.V. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers 2023, 15, 451. [Google Scholar] [CrossRef]
- Martín-Del-Campo, A.; Fermín-Jiménez, J.A.; Fernández-Escamilla, V.V.; Escalante-García, Z.Y.; Macías-Rodríguez, M.E.; Estrada-Girón, Y. Improved extraction of carrageenan from red seaweed (Chondracantus canaliculatus) using ultrasound-assisted methods and evaluation of the yield, physicochemical properties and functional groups. Food Sci. Biotechnol. 2021, 30, 901–910. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. Appl. Sci. 2022, 12, 3123. [Google Scholar] [CrossRef]
- Rajeswari, A.; Christy, E.J.S.; Swathi, E.; Pius, A. Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ. Chem. Ecotoxicol. 2020, 2, 107–114. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.J.; Mendoza-Madrigal, A.G.; Di Pierro, P.; García-Almendárez, B.E.; Amaro-Reyes, A.; Regalado-González, C. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils. Int. J. Mol. Sci. 2017, 18, 2370. [Google Scholar] [CrossRef]
- Dungani, R.; Sumardi, I.; Suhaya, Y.; Aditiawati, P.; Dody, S.; Rosamah, E.; Islam, N.; Hartati, S.; Karliati, T. Reinforcing Effects of Seaweed Nanoparticles in Agar-Based Biopolymer Composite: Physical, Water Vapor Barrier, Mechanical, and Biodegradable Properties. BioResources 2021, 16, 5118–5132. [Google Scholar] [CrossRef]
- Cameron, J.J.; Leung, C.K. Mining Frequent Patterns from Precise and Uncertain Data,” 2011, UNIFACS. Available online: http://hdl.handle.net/1993/32123 (accessed on 28 September 2024).
- Hernández, V.; Ibarra, D.; Triana, J.F.; Martínez-Soto, B.; Faúndez, M.; Vasco, D.A.; Gordillo, L.; Herrera, F.; García-Herrera, C.; Garmulewicz, A. Agar Biopolymer Films for Biodegradable Packaging: A Reference Dataset for Exploring the Limits of Mechanical Performance. Materials 2022, 15, 3954. [Google Scholar] [CrossRef]
- Trewartha, A.; Walker, N.; Huo, H.; Lee, S.; Cruse, K.; Dagdelen, J.; Dunn, A.; Persson, K.P.; Ceder, G.; Jain, A. The Impact of Domain-Specific Pre-Training on Named Entity Recognition Tasks in Materials Science. SSRN Electron. J. 2021, 3, 100488. [Google Scholar] [CrossRef]
- Liu, R.-L. Identification of conclusive association entities in biomedical articles. J. Biomed. Semant. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Salloum, S.A.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Using Text Mining Techniques for Extracting Information from Research Articles. In Intelligent Natural Language Processing: Trends and Applications; Springer: New York, NY, USA, 2017; pp. 373–397. [Google Scholar] [CrossRef]
- Neumann, M.; King, D.; Beltagy, I.; Ammar, W. ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. In Proceedings of the 18th BioNLP Workshop and Shared Task, Florence, Italy, 1 August 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019. [Google Scholar]
- Jablonka, K.M.; Schwaller, P.; Ortega-Guerrero, A.; Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 2024, 6, 161–169. [Google Scholar] [CrossRef]
- Gupta, T.; Zaki, M.; Krishnan, N.M.A. Mausam MatSciBERT: A materials domain language model for text mining and information extraction. npj Comput. Mater. 2022, 8, 102. [Google Scholar] [CrossRef]
- Kononova, O.; Huo, H.; He, T.; Rong, Z.; Botari, T.; Sun, W.; Tshitoyan, V.; Ceder, G. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 2019, 6, 203. [Google Scholar] [CrossRef]
- Véliz, F.A.V.; Bikku, T.; Ibarra, D.; Hernández, V.; Garmulewicz, A.; Herrera, F. fherreralab/-Seaweed-Based-Bioplastics-Data-Mining-Ingredient-Property-Relations-from-the-Scientific-Literature: Supplementary Material, v1.0; Zenodo: Genève, Switzerland, 2024. [Google Scholar] [CrossRef]
- Tunstall, L.; von Werra, L.; Wolf, T. Natural Language Processing with Transformers Building Language Applications with Hugging Face; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Trewartha, A.; Walker, N.; Huo, H.; Lee, S.; Cruse, K.; Dagdelen, J.; Dunn, A.; Persson, K.A.; Ceder, G.; Jain, A. Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science. Patterns 2022, 3, 100488. [Google Scholar] [CrossRef]
- Liao, W.; Liu, Z.; Dai, H.; Wu, Z.; Zhang, Y.; Huang, X.; Chen, Y.; Jiang, X.; Liu, D.; Zhu, D.; et al. Mask-guided BERT for Few Shot Text Classification. Neurocomputing 2023, 610, 128576. [Google Scholar] [CrossRef]
- Roda, A.; Prabhu, P.; Dubey, A. Design and evaluation of buccal patches containing combination of hydrochlorothiazide and atenolol. Int. J. Appl. Pharm. 2018, 10, 105–112. [Google Scholar] [CrossRef]
- Dawaba, A.M.; Dawaba, H.M.; Abu El-Enin, A.S.M.; Khalifa, M.K.A. Fabrication of bioadhesive ocusert with different polymers: Once a day dose. Int. J. Appl. Pharm. 2018, 10, 309–317. [Google Scholar] [CrossRef]
- Kazemi, Z.; Taghizadeh, S.M.; Keshavarz, S.T.; Lahootifard, F. Effect of composition on mechanical and physicochemical properties of mucoadhesive buccal films containing buprenorphine hydrochloride: From design of experiments to optimal formulation. J. Drug Deliv. Sci. Technol. 2020, 56, 101578. [Google Scholar] [CrossRef]
- Kim, B.-S.; Park, G.-T.; Park, M.-H.; Shin, Y.G.; Cho, C.-W. Preparation and evaluation of oral dissolving film containing local anesthetic agent, lidocaine. J. Pharm. Investig. 2017, 47, 575–581. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.; Zhu, Y.; Zeng, Y.; Fang, C.; Liu, Y.; Hu, S.; Ge, Y.; Jiang, W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem. 2022, 393, 133342. [Google Scholar] [CrossRef] [PubMed]
- Rhim, J.W.; Wu, Y.; Weller, C.L.; Schnepf, M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. J. Food Sci. 1999, 64, 149–152. [Google Scholar] [CrossRef]
- Fabra, M.J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocoll. 2018, 81, 96–103. [Google Scholar] [CrossRef]
- Wang, S.; Marcone, M.F.; Barbut, S.; Lim, L.-T. Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Res. Int. 2012, 49, 80–91. [Google Scholar] [CrossRef]
- Fransiska, D.; Giyatmi; Basmal, J.; Susanti, E. The effect of organic powdered cottonii concentration and types of plasticizers on the characteristics of edible film. IOP Conf. Ser. Earth Environ. Sci. 2020, 483, 012008. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Macieja, S.; Śliwiński, M.; Bartkowiak, A.; Roy, S.; Sobolewski, P. Alginate Biofunctional Films Modified with Melanin from Watermelon Seeds and Zinc Oxide/Silver Nanoparticles. Materials 2022, 15, 2381. [Google Scholar] [CrossRef]
- Wu, H.; Hu, B.; Dong, Z.; Lu, M.; Peng, Q.; Zhang, Z. Preparation and properties analysis of edible watermelon rind based film. J. Food Sci. Biotechnol. 2018, 37, 1091–1098. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Zhang, D.; Zhong, K.; Sun, T.; Li, X.; Li, J. Preparation of a bilayer edible film incorporated with lysozyme and its effect on fish spoilage bacteria. J. Food Saf. 2020, 40, 12832. [Google Scholar] [CrossRef]
- Min, S.; Harris, L.J.; Han, J.H.; Krochta, J.M. Listeria monocytogenes Inhibition by Whey Protein Films and Coatings Incorporating Lysozyme. J. Food Prot. 2005, 68, 2317–2325. [Google Scholar] [CrossRef]
- Murillo-Martínez, M.M.; Tello-Solís, S.R.; García-Sánchez, M.A.; Ponce-Alquicira, E. Antimicrobial Activity and Hydrophobicity of Edible Whey Protein Isolate Films Formulated with Nisin and/or Glucose Oxidase. J. Food Sci. 2013, 78, M560–M566. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Min, S.C. Antimicrobial edible defatted soybean meal-based films incorporating the lactoperoxidase system. LWT-Food Sci. Technol. 2013, 54, 42–50. [Google Scholar] [CrossRef]
- Ayala, M.; Thomsen, M.; Pizzol, M. Life Cycle Assessment of pilot scale production of seaweed-based bioplastic. Algal Res. 2023, 71, 103036. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Alwaleed, E.A.; Ibrahim, A.; Saber, H. Preparation and characterization of bioplastic film from the green seaweed Halimeda opuntia. Int. J. Biol. Macromol. 2024, 259, 129307. [Google Scholar] [CrossRef]
- Rajasekar, V.; Karthickumar, P.; Rose, A.H.R.; Manimmehalai, N.; Subhasri, D. Development and characterization of biode-gradable film from marine red seaweed (Kappaphycus alvarezii). Pigment. Resin Technol. 2023, 52, 478–489. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Jiao, Y.; Wang, Z.; Tang, X.; Du, Z.; Zhang, Z.; Lu, S.; Qiao, C.; Cui, J. Biodegradable packaging films with ε-polylysine/ZIF-L composites. LWT 2022, 166, 113776. [Google Scholar] [CrossRef]
- Karami, P.; Zandi, M.; Ganjloo, A. Evaluation of physicochemical, mechanical, and antimicrobial properties of gelatin-sodium alginate-yarrow (Achillea millefolium L.) essential oil film. J. Food Process. Preserv. 2022, 46, 16632. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, O.; Borgs, C.; Chayes, J.T.; Yaghi, O.M. ChatGPT Chemistry Assistant for Text Mining and the Prediction of MOF Synthesis. J. Am. Chem. Soc. 2023, 145, 18048–18062. [Google Scholar] [CrossRef]
(TITLE-ABS-KEY (alginate OR agar OR carrageenan OR seaweed OR macroalgae) AND TITLE-ABS-KEY (bioplastic OR bio-plastic OR “biopolymer film” OR film OR “plastic bag” OR packaging OR biocomposite OR bio-composite)) |
Masked Sentence |
---|
<S1> Membranes were prepared using alginate, a polysaccharide derived from seaweed, combined with glycerol as a plasticizer. When {Additive} was incorporated as a secondary additive, the water vapor permeability of the membrane [MASK], potentially affecting its suitability for packaging applications. <S2> The film was produced by mixing alginate, extracted from seaweed, with glycerol to enhance flexibility. Upon addition of {Additive}, the water vapor permeability of the resulting film [MASK], which could influence its performance in moisture-sensitive environments. <S3> By adding {Additive} to a film composed of alginate, a seaweed-based biopolymer, and glycerol, the water vapor permeability [MASK]. This modification aims to optimize the barrier properties of the bioplastic for specific applications. <S4> By incorporating {Additive} as an additive in a film formulation based on alginate, a marine-derived biopolymer, and glycerol, the water vapor permeability [MASK]. Such enhancements could improve the functional properties of bioplastic films for use in sustainable packaging. |
Sentence | Third Component | Mask 1 | Mask 2 | Mask 3 | Mask 4 |
S1 | propyl | decreased: 0.5401% | increased: 0.3574% | improved: 0.1314% | reduced: 0.0180% |
methyl | decreased: 0.5379% | increased: 0.3568% | improved: 0.0288% | reduced: 0.0194% | |
ethyl | decreased: 0.5327% | increased: 0.3610% | improved: 0.0291% | reduced: 0.0183% | |
S2 | grape seed | increased: 0.6404% | decreased: 0.2639% | increases: 0.0296% | improved: 0.0115% |
organic powdered cottonii | increased: 0.6388% | decreased: 0.2562% | increases: 0.0327% | improved: 0.0141% | |
apricot kernel | increased: 0.6370% | decreased: 0.2715% | increases: 0.0275% | reduced: 0.0122% | |
S3 | watermelon | increases: 0.3895% | decreases: 0.3522% | increased: 0.1024% | decreased: 0.0905% |
gold | increases: 0.3889% | decreases: 0.3080% | increased: 0.1302% | decreased: 0.0980% | |
spinach | increases: 0.3887% | decreases: 0.3051% | increased: 0.1297% | decreased: 0.1005% | |
S4 | lysozyme | increased: 0.5653% | increases: 0.1306% | decreased: 0.1155% | improved: 0.0841% |
peroxidase | increased: 0.5588% | decreased: 0.1373% | increases: 0.1108% | improved: 0.0882% | |
wheat straw | increased: 0.5558% | decreased: 0.1278% | increases: 0.1216% | improved: 0.0899% |
Sentences |
---|
<SA> By adding [MASK] to sodium alginate, the water vapor permeability increases. <SB> By adding an additive such as [MASK] to a sodium alginate film, the water vapor permeability increases. <SC> Adding additives such as [MASK] to a sodium alginate film increases its water vapor permeability. |
Predicted Masked Words | |||||
---|---|---|---|---|---|
SA | chitosan: 0.1626% starch: 0.0539% PVA: 0.0513% gelatin: 0.0376% water: 0.0293% | SB | starch: 0.0757% gelatin: 0.0371% ethanol: 0.0349% PVA: 0.0344% glycerol: 0.0339% | SC | starch: 0.1038% gelatin: 0.0567% surfactants: 0.0498% PVP: 0.0418% glycerol: 0.0402% |
Model | MatBERT | MatSciBERT |
---|---|---|
Size | 2,000,000 papers | 150,000 papers |
Dataset | Scientific publications, journal articles, and databases containing technical and academic texts in the field of materials science. | Inorganic glasses, metallic glasses, alloys, and cement and concrete from the Elsevier Science Direct Database. |
Sodium Alginate | Starch: 0.0778 Chitosan: 0.0752 Gelatin: 0.0438 PVA: 0.0369 PVP: 0.0309 | Sucrose: 0.0388 Glucose: 0.0242 Urea: 0.0251 Phosphate: 0.0148 Magnesium: 0.0133 |
Agar | Starch: 0.0853 Gelatin: 0.0605 Chitosan: 0.0408 Glycerol: 0.0312 NaCl: 0.0258 | Zinc: 0.0153 Glucose: 0.014 Methanol: 0.0125 Starch: 0.0109 Glycerol: 0.01 |
Carrageenan | Starch: 0.0816 Chitosan: 0.0682 Glycerol: 0.0437 Gelatin: 0.0418 PVA: 0.0344 | Sucrose: 0.0314 Aluminium: 0.02 Glucose: 0.0188 Magnesium: 0.0186 Glycerol: 0.0122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Véliz, F.; Bikku, T.; Ibarra-Pérez, D.; Hernández-Muñoz, V.; Garmulewicz, A.; Herrera, F. Seaweed-Based Bioplastics: Data Mining Ingredient–Property Relations from the Scientific Literature. Data 2025, 10, 20. https://doi.org/10.3390/data10020020
Véliz F, Bikku T, Ibarra-Pérez D, Hernández-Muñoz V, Garmulewicz A, Herrera F. Seaweed-Based Bioplastics: Data Mining Ingredient–Property Relations from the Scientific Literature. Data. 2025; 10(2):20. https://doi.org/10.3390/data10020020
Chicago/Turabian StyleVéliz, Fernanda, Thulasi Bikku, Davor Ibarra-Pérez, Valentina Hernández-Muñoz, Alysia Garmulewicz, and Felipe Herrera. 2025. "Seaweed-Based Bioplastics: Data Mining Ingredient–Property Relations from the Scientific Literature" Data 10, no. 2: 20. https://doi.org/10.3390/data10020020
APA StyleVéliz, F., Bikku, T., Ibarra-Pérez, D., Hernández-Muñoz, V., Garmulewicz, A., & Herrera, F. (2025). Seaweed-Based Bioplastics: Data Mining Ingredient–Property Relations from the Scientific Literature. Data, 10(2), 20. https://doi.org/10.3390/data10020020