Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology
Abstract
:1. Summary
2. Data Description
2.1. Spectra Files
2.2. LIBS Signal
2.3. Element Detection
3. Methods
3.1. Samples
3.2. LIBS Techniques
3.3. Handheld LIBS Analyzer
3.4. Data Acquisition
3.5. Spectra Visualization
3.6. Applications
4. User Note
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Saeid, R.H.; Abdel-Salam, Z.; Pagnotta, S.; Palleschi, V.; Harith, M.A. Classification of sedimentary and igneous rocks by laser induced breakdown spectroscopy and nanoparticle-enhanced laser induced breakdown spectroscopy combined with principal component analysis and graph theory. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105622. [Google Scholar] [CrossRef]
- Syvilay, D.; Bousquet, B.; Chapoulie, R.; Orange, M.; Bourdonnec, F.X.L. Advanced statistical analysis of LIBS spectra for the sourcing of obsidian samples. J. Anal. At. Spectrom. 2019, 34, 867–873. [Google Scholar] [CrossRef]
- Alvarez-Llamas, C.; Tercier, A.; Ballouard, C.; Fabre, C.; Hermelin, S.; Margueritat, J.; Duponchel, L.; Dujardin, C.; Motto-Ros, V. Ultrafast μLIBS imaging for the multiscale mineralogical characterization of pegmatite rocks. J. Anal. At. Spectrom. 2024, 39, 1077–1086. [Google Scholar] [CrossRef]
- Fabre, C.; Ourti, N.E.; Ballouard, C.; Mercadier, J.; Cauzid, J. Handheld LIBS analysis for in situ quantification of Li and detection of the trace elements (Be, Rb and Cs). J. Geochem. Explor. 2022, 236, 106979. [Google Scholar] [CrossRef]
- Foucaud, Y.; Fabre, C.; Demeusy, B.; Filippova, I.V.; Filippov, L.O. Optimisation of fast quantification of fluorine content using handheld laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105628. [Google Scholar] [CrossRef]
- Korbel, C.; Mezoued, N.; Demeusy, B.; Fabre, C.; Cauzid, J.; Filippova, I.V.; Filippov, L.O. Quantification of lithium using handheld instruments: Application of LIBS and XRF spectroscopy to assay the lithium content of mineral processing products. J. Anal. At. Spectrom. 2024, 39, 1838–1853. [Google Scholar] [CrossRef]
- Fabre, C.; Marulier, L.; Monfaredi, B.; Motto-Ros, V.; Bousquet, B.; Eglinger, A.; Tarantola, A. Exploring rare earth elements in complex microscopic mineral phases: Inputs from μLIBS imaging. Spectrochim. Acta Part B At. Spectrosc. 2024, 216, 106954. [Google Scholar] [CrossRef]
- Fabre, C.; Ourti, N.E.; Mercadier, J.; Cardoso-Fernandes, J.; Dias, F.; Perrotta, M.; Koerting, F.; Lima, A.; Kaestner, F.; Koellner, N.; et al. Analyses of Li-Rich Minerals Using Handheld LIBS Tool. Data 2021, 6, 68. [Google Scholar] [CrossRef]
- Harmon, R.S.; De Lucia, F.C.; Miziolek, A.W.; McNesby, K.L.; Walters, R.A.; French, P.D. Laser-induced breakdown spectroscopy (LIBS)—an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis. Geochem. Explor. Environ. Anal. 2005, 5, 21–28. [Google Scholar] [CrossRef]
- Lemiere, R.; Harmon, R.H. XRF and LIBS for Field Geology. In In Portable Spectroscopy and Spectrometry, 1st ed.; Crocombe, R., Leary, P., Kammrath, B., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 455–497. [Google Scholar] [CrossRef]
- Lemière, B.; Uvarova, Y.A. New developments in field-portable geochemical techniques and on-site technologies and their place in mineral exploration. Geochem. Explor. Environ. Anal. 2019, 20, 205–216. [Google Scholar] [CrossRef]
- Harmon, R.S. Laser-Induced Breakdown Spectroscopy in Mineral Exploration and Ore Processing. Minerals 2024, 14, 731. [Google Scholar] [CrossRef]
- Fontana, F.F.; van der Hoek, B.; Tassios, S.; Tiddy, C.; Stromberg, J.; Francis, N.; Uvarova, Y.A.; Lancaster, D.G. Laser Induced Breakdown Spectroscopy (LIBS) for whole rock geochemistry. J. Geochem. Explor. 2023, 246, 107160. [Google Scholar] [CrossRef]
- Wise, M.A.; Harmon, R.S.; Curry, A.; Jennings, M.; Grimac, Z.; Khashchevskaya, D. Handheld LIBS for Li Exploration: An Example from the Carolina Tin-Spodumene Belt, USA. Minerals 2022, 12, 77. [Google Scholar] [CrossRef]
- Harmon, R.S.; Wise, M.A.; Curry, A.C.; Mistele, J.S.; Mason, M.S.; Grimac, Z. Rapid Analysis of Muscovites on a Lithium Pegmatite Prospect by Handheld LIBS. Minerals 2023, 13, 697. [Google Scholar] [CrossRef]
- Sweetapple, M.T.; Tassios, S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpre-tation of lithium in pegmatite minerals. Am. Mineral. 2015, 100, 2141–2151. [Google Scholar] [CrossRef]
- Pochon, A.; Desaulty, A.M.; Bailly, L. Handheld laser-induced breakdown spectroscopy (LIBS) as a fast and easy method to trace gold. J. Anal. At. Spectrom. 2020, 35, 254–264. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Sun, X.; Qu, D.; Li, S.; Chen, G.; Li, C.; Tian, D.; Yao, L. Discrimination of rocks by laser-induced breakdown spectroscopy combined with Random Forest (RF). J. Anal. At. Spectrom. 2022, 38, 243–252. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Sci Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C.; et al. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- Brunnbauer, L.; Gajarska, Z.; Lohninger, H.; Limbeck, A. A critical review of recent trends in sample classification using La-ser-Induced Breakdown Spectroscopy (LIBS). TrAC Trends Anal. Chem. 2023, 159, 116859. [Google Scholar] [CrossRef]
- Senesi, G.S.; Allegretta, I.; Marangoni, B.S.; Ribeiro, M.C.; Porfido, C.; Terzano, R.; De Pascale, O.; Eramo, G. Geochemical identification and classification of cherts using handheld laser induced breakdown spectroscopy (LIBS) supported by supervised machine learning algorithms. Appl. Geochem. 2023, 151, 105625. [Google Scholar] [CrossRef]
- Dutrow, B.L.; McMillan, N.J.; Henry, D.J. A multivariate statistical approach for mineral geographic provenance determination using laser-induced breakdown spectroscopy and electron microprobe chemical data: A case study of copper-bearing tour-malines. Am. Mineral. 2024, 109, 1085–1095. [Google Scholar] [CrossRef]
- Shih, M.; Yuan, Y.; Shi, G.-H. Comparative analysis of LDA, PLS-DA, SVM, RF, and voting ensemble for discrimination origin in greenish-white to white nephrites using LIBS. J. Anal. At. Spectrom. 2024, 39, 1560–1570. [Google Scholar] [CrossRef]
- Defnet, P.A.; Wise, M.A.; Harmon, R.S.; Hark, R.R.; Hilferding, K. Analysis of Garnet by Laser-Induced Breakdown Spectrosco-py—Two Practical Applications. Minerals 2021, 11, 705. [Google Scholar] [CrossRef]
- Ali, A.; Khan, M.Z.; Rehan, I.; Rehan, K.; Muhammad, R. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis. J. Spectrosc. 2016, 2016, 1835027. [Google Scholar] [CrossRef]
- Capela, D.; Lopes, T.; Dias, F.; Ferreira, M.F.S.; Teixeira, J.; Lima, A.; Jorge, P.A.; Silva, N.A.; Guimarães, D. Advancing automated mineral identification through LIBS imaging for lithium-bearing mineral species. Spectrochim. Acta Part B At. Spectrosc. 2025, 223, 107085. [Google Scholar] [CrossRef]
- Capela, D.; Ferreira, M.F.S.; Lima, A.; Dias, F.; Lopes, T.; Guimarães, D.; Jorge, P.A.; Silva, N.A. Robust and interpretable mineral identification using laser-induced breakdown spectroscopy mapping. Spectrochim. Acta Part B At. Spectrosc. 2023, 206, 106733. [Google Scholar] [CrossRef]
- El Haddad, J.; de Lima Filho, E.S.; Vanier, F.; Harhira, A.; Padioleau, C.; Sabsabi, M.; Wilkie, G.; Blouin, A. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy. Miner. Eng. 2019, 134, 281–290. [Google Scholar] [CrossRef]
- Ismail, A.M.; Imam, H.; Elhassan, A.; Youniss, T.W.; Harith, A.M. LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom. 2004, 19, 489–494. [Google Scholar] [CrossRef]
- Cousin, A.; Sautter, V.; Fabre, C.; Dromart, G.; Montagnac, G.; Drouet, C.; Meslin, P.-Y.; Gasnault, O.; Beyssac, O.; Bernard, S.; et al. SuperCam calibration targets on board the Perseverance rover: Fabrication and quantitative characterization. Spectrochim. Acta Part B At. Spectrosc. 2022, 188, 106341. [Google Scholar] [CrossRef]
- Kim, Y.; Fabre, C.; Cauzid, J. Access to quantitative analysis of carbonates using a portable LIBS instrument: First applications to single minerals and mineral mixtures. Spectrochim. Acta Part B At. Spectrosc. 2022, 191, 106397. [Google Scholar] [CrossRef]
- Harmon, R.H.; Senesi, G.S. Laser-Induced Breakdown Spectroscopy—A geochemical tool for the 21st century. Appl. Geochem. 2021, 128, 104929. [Google Scholar] [CrossRef]
- Radziemski, L.; Cremers, D. A brief history of laser-induced breakdown spectroscopy: From the concept of atoms to LIBS 2012. Spectrochim. Acta Part B At. Spectrosc. 2013, 87, 3–10. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Bengoechea, J.; Aragón, C. Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 461–469. [Google Scholar] [CrossRef]
- Ya-xiong, H.; Wen-qi, Z.; Bin, Z.; Yong-sheng, Z.; Chuan, K.; Tao, X.; Yong, Z. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma. Spectrosc Spectr Anal. 2022, 42, 1049–1057. [Google Scholar]
- Xu, W.; Sun, C.; Tan, Y.; Gao, L.; Zhang, Y.; Yue, Z.; Shabbir, S.; Wu, M.; Zou, L.; Chen, F.; et al. Total alkali silica classification of rocks with LIBS: Influences of the chemical and physical matrix effects. J. Anal. At. Spectrom. 2020, 35, 1641–1653. [Google Scholar] [CrossRef]
- Menges, F. Spectroscopy. Spectroscopy Ninja—Optical Spectroscopy Software and Services. Available online: http://spectroscopy.ninja/ (accessed on 15 January 2025).
- Rifai, K.; Michaud Paradis, M.C.; Swierczek, Z.; Doucet, F.; Özcan, L.; Fayad, A.; Li, J.; Vidal, F. Emergences of New Technology for Ultrafast Automated Mineral Phase Identification and Quantitative Analysis Using the CORIOSITY Laser-Induced Breakdown Spec-troscopy (LIBS) System. Minerals 2020, 10, 918. [Google Scholar] [CrossRef]
- Janovszky, P.; Jancsek, K.; Palásti, J.D.; Kopniczky, J.; Hopp, B.; Tóth, T.M.; Galbács, G. Classification of minerals and the assessment of lithium and beryllium content in granitoid rocks by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2021, 36, 813–823. [Google Scholar] [CrossRef]
Mineral | Formula | Sample | Spectra |
---|---|---|---|
Albite | Na(AlSi3O8) | 5 | 356 |
Amblygonite | (Li,Na)Al(PO4)(F,OH) | 1 | 96 |
Apatite | Ca5(PO4)3(Cl/F/OH) | 5 | 368 |
Apophyllite | KCa4(Si4O10)2F8(H2O) | 1 | 46 |
Aragonite | CaCO3 | 1 | 49 |
Arsenopyrite | FeAsS | 4 | 304 |
Baryte | BaSO4 | 1 | 60 |
Beryl | Be3Al2(Si6O18) | 2 | 192 |
Biotite | K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 | 4 | 207 |
Calcite | CaCO3 | 2 | 97 |
Cassiterite | SnO2 | 6 | 486 |
Chalcopyrite | CuFeS2 | 5 | 363 |
Chlorite | A5–6T4Z18/A = Al, Fe, Li, Mg, Mn, Ni/T = Al, Fe, S /Z = O, OH | 3 | 223 |
Chromite | FeCr2O4 | 1 | 40 |
Columbite | (Fe,Mn)Nb2O6 | 1 | 96 |
Copper | Cu | 1 | 30 |
Dolomite | CaMg(CO3)2 | 1 | 40 |
Fluorite | CaF2 | 11 | 731 |
Galena | PbS | 1 | 29 |
Garnet | X3Z2(SiO4)3/X = Mg, Ca, Fe, Mn/Z = Al, Fe, Cr, V | 4 | 160 |
Gypsum | Ca(SO4)2(H2O) | 1 | 50 |
Hematite | Fe2O3 | 5 | 317 |
Illite | (K,H3O)Al2Si4O10(OH)2 | 1 | 80 |
Ilmenite | FeTiO3 | 1 | 109 |
Kaolinite | Al2Si2O5(OH)4 | 1 | 40 |
K-feldspars | KAlSi3O8 | 7 | 592 |
Kyanite | Al2SiO5 | 1 | 40 |
Li micas | KLi2Al(Si4O10)(F,OH)2 to K(Li1.5Al1.5)(AlSi3O10)(F,OH)2 | 22 | 2550 |
Magnesite | MgCO3 | 1 | 40 |
Magnetite | Fe2+Fe3+2O4 | 1 | 10 |
Malachite | Cu2(CO3)(OH)2 | 1 | 20 |
Molybdenite | MoS2 | 3 | 145 |
Muscovite | KAl2(AlSi3O10)(OH)2 | 5 | 272 |
Pyrite | FeS2 | 4 | 248 |
Pyrrholite | Fe7S8 | 1 | 50 |
Quartz | SiO2 | 8 | 349 |
Rhodochrosite | MnCO3 | 1 | 40 |
Rutile | TiO2 | 4 | 266 |
Serpentinite | (Mg,Fe)3Si2O5(OH)4 | 1 | 40 |
Sphalerite | (Zn,Fe)S | 8 | 534 |
Spodumene | LiAlSi2O6 | 1 | 125 |
Stannite | (Mn,Fe)(Ta,Nb)2O6 | 1 | 96 |
Sulfur | S | 1 | 10 |
Talc | Mg3Si4O10(OH)2 | 1 | 40 |
Tantalite | (Fe, Mg, Mn)Ta2O6 | 1 | 96 |
Topaz | Al2SiO4(F,OH)2 | 1 | 44 |
Tourmaline | AD3G6 (T6O18)(BO3)3X3Z | 11 | 709 |
A = Ca, Na, K, Pb | |||
D = Al, Fe, Li, Mg, Mn, Ti/G = Al, Cr, Fe, V | |||
T = Si, Al/X = O, OH/Z = F, O, OH | |||
Vermiculite | (Mg,Fe,Al)3(Al,Si)4O10(OH)24H2O | 1 | 40 |
Vesuvianite | Ca10Al4(SiO4)5(OH)4 | 1 | 40 |
Wolframite | (Mn, Fe)WO4 | 6 | 429 |
Wollastonite | CaSiO3 | 1 | 40 |
Zinnwaldite | KFe2Al(Al2Si2O10)(OH)2 to KLi2Al(Si4O10)(F,OH)2 | 4 | 128 |
Zircon | ZrSiO4 | 1 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezoued, N.; Fabre, C.; Cauzid, J.; Kim, Y.; Jatteau, M. Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology. Data 2025, 10, 40. https://doi.org/10.3390/data10030040
Mezoued N, Fabre C, Cauzid J, Kim Y, Jatteau M. Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology. Data. 2025; 10(3):40. https://doi.org/10.3390/data10030040
Chicago/Turabian StyleMezoued, Naila, Cécile Fabre, Jean Cauzid, YongHwi Kim, and Marjolène Jatteau. 2025. "Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology" Data 10, no. 3: 40. https://doi.org/10.3390/data10030040
APA StyleMezoued, N., Fabre, C., Cauzid, J., Kim, Y., & Jatteau, M. (2025). Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology. Data, 10(3), 40. https://doi.org/10.3390/data10030040