Linking Fungal Genomics to Thermal Growth Limits: A Dataset of 730 Sequenced Species
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Literature Search
3.2. Genome Data Search
3.3. Undermind Search
3.4. Uniprot Search
3.5. Maximum and Minimum Temperature Estimate
3.6. Togashi Analysis
3.7. Naming and De-Duplicatiom
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Slesarev, A.I.; Mezhevaya, K.V.; Makarova, K.S.; Polushin, N.N.; Shcherbinina, O.V.; Shakhova, V.V.; Belova, G.I.; Aravind, L.; Natale, D.A.; Rogozin, I.B.; et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Nat. Acad. Sci. USA 2002, 99, 4644–4649. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Nat. Acad. Sci. USA 2008, 105, 10949–10954. [Google Scholar]
- Holden, J. Some like it hot: Understanding the limits of life using hyperthermophilic microbes. In Proceedings of the ABSTRACT 37th COSPAR Scientific Assembly, Montreal, QC, Canada, 13–20 July 2008; p. 1259. [Google Scholar]
- Clarke, A. The thermal limits to life on Earth. Int. J. Astrobiol. 2014, 13, 141–154. [Google Scholar] [CrossRef]
- de Oliveira, T.B.; Gomes, E.; Rodrigues, A. Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 2015, 19, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Tendulkar, S.; Hattiholi, A.; Chavadar, M.; Dodamani, S. Psychrophiles: A journey of hope. J. Biosci. 2021, 46, 64. [Google Scholar] [CrossRef]
- Gostinčar, C.; Grube, M.; De Hoog, S.; Zalar, P.; Gunde-Cimerman, N. Extremotolerance in fungi: Evolution on the edge. FEMS Microbiol. Ecol. 2009, 71, 2–11. [Google Scholar] [CrossRef]
- Saccomori, F.; Wigmann, É.F.; Bernardi, A.O.; de Jesús Alcano-González, M.; Copetti, M.V. Influence of storage temperature on growth of Penicillium polonicum and Penicillium glabrum and potential for deterioration of frozen chicken nuggets. Int. J. Food Microbiol. 2015, 200, 1–4. [Google Scholar]
- Bains, W.; Schulze-Makuch, D. The cosmic zoo: The (near) inevitability of the evolution of complex, macroscopic life. Life 2016, 6, 25. [Google Scholar] [CrossRef]
- Maheshwari, R.; Bharadwaj, G.; Bhat, M.K. Thermophilic fungi: Their physiology and enzymes. Microbiol. Mol. Biol. Rev. 2000, 64, 461–488. [Google Scholar]
- Morgenstern, I.; Powlowski, J.; Ishmael, N.; Darmond, C.; Marqueteau, S.; Moisan, M.-C.; Quenneville, G.; Tsang, A. A molecular phylogeny of thermophilic fungi. Fungal Biol. 2012, 116, 489–502. [Google Scholar] [CrossRef]
- Unsworth, L.D.; van der Oost, J.; Koutsopoulos, S. Hyperthermophilic enzymes − stability, activity and implementation strategies for high temperature applications. FEBS J. 2007, 274, 4044–4056. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Abo Nouh, F.A.; Gezaf, S.A.; Abo Nahas, H.H.; Abo Nahas, Y.H.; Vargas-De-La-Cruz, C.; Solorzano Acosta, R.A.; Landa-Acuña, D.; Luis-Alaya, B.; Abdel-Azeem, A.M. Bioprospecting for biomolecules from different fungal communities: An introduction. In Industrially Important Fungi for Sustainable Development: Volume 2: Bioprospecting for Biomolecules; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–71. [Google Scholar]
- Mota Fernandes, C.; Dasilva, D.; Haranahalli, K.; McCarthy, J.B.; Mallamo, J.; Ojima, I.; Del Poeta, M. The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob. Agents Chemother. 2021, 65, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Fungi and the rise of mammals. PLoS Pathog. 2012, 8, e1002808. [Google Scholar]
- Robert, V.; Cardinali, G.; Casadevall, A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015, 13, 18. [Google Scholar] [CrossRef]
- Truss, C.O. The role of Candida albicans in human illness. J. Orthomol. Psychiatry 1981, 10, 228–238. [Google Scholar]
- Concia, E.; Azzini, A.M.; Conti, M. Epidemiology Incidence and Risk Factors for Invasive Candidiasis in High-Risk Patients. Drugs 2009, 69, 5–14. [Google Scholar] [CrossRef]
- Chen, S.C.-A.; Meyer, W.; Sorrell, T.C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 2014, 27, 980–1024. [Google Scholar]
- Van Rhijn, N.; Bromley, M. The consequences of our changing environment on life threatening and debilitating fungal diseases in humans. J. Fungi 2021, 7, 367. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Seidel, D.; Wurster, S.; Jenks, J.D.; Sati, H.; Gangneux, J.-P.; Egger, M.; Alastruey-Izquierdo, A.; Ford, N.P.; Chowdhary, A.; Sprute, R. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 2024, 5, e594–e605. [Google Scholar] [CrossRef]
- Frías-De-León, M.G.; Brunner-Mendoza, C.; del Rocío Reyes-Montes, M.; Duarte-Escalante, E. The Impact of Climate Change on Fungal Diseases; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Dallinger, W.H. The president’s address. J. R. Microsc. Soc. 1887, 7, 185–199. [Google Scholar] [CrossRef]
- Hu, E.-Z.; Lan, X.-R.; Liu, Z.-L.; Gao, J.; Niu, D.-K. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genom. 2022, 23, 110. [Google Scholar] [CrossRef] [PubMed]
- Sauer, D.B.; Wang, D.-N. Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 2019, 35, 3224–3231. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, G.; Chen, Z.; Ding, X.; Wu, J.; Zhang, H.; Jia, S. Psychrophilic Yeasts: Insights into Their Adaptability to Extremely Cold Environments. Genes 2023, 14, 158. [Google Scholar] [CrossRef]
- van Noort, V.; Bradatsch, B.; Arumugam, M.; Amlacher, S.; Bange, G.; Creevey, C.; Falk, S.; Mende, D.R.; Sinning, I.; Hurt, E.; et al. Consistent mutational paths predict eukaryotic thermostability. BMC Evol. Biol. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Baeza, M.; Sepulveda, D.; Cifuentes, V.; Alcaíno, J. Codon usage bias in yeasts and its correlation with gene expression, growth temperature, and protein structure. Front. Microbiol. 2024, 15, 1414422. [Google Scholar] [CrossRef]
- Colhoun, J. Effects of environmental factors on plant diseases. Annu. Rev. Phytopathol. 1973, 11, 343–364. [Google Scholar] [CrossRef]
- Ellison, C.E.; Hall, C.; Kowbel, D.; Welch, J.; Brem, R.B.; Glass, N.; Taylor, J.W. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc. Natl. Acad. Sci. USA 2011, 108, 2831–2836. [Google Scholar] [CrossRef]
- Zimmermann, G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): Biology, ecology and use in biological control. Biocontrol Sci. Technol. 2008, 18, 865–901. [Google Scholar] [CrossRef]
- Solieri, L.; Gullo, M.; Giudici, P. Traditional balsamic vinegar: A microbiological overview. In Handbook of Plant-Based Fermented Food and Beverage Technology, 2nd ed.; CRC Press, Taylor and Francis Group: New York, NY, USA, 2012; pp. 609–630. [Google Scholar]
- Togashi, K. Biological Characters of Plant Pathogens: Temperature Relations; Meibundo: Ishikawa, Japan, 1949. [Google Scholar]
- Bebber, D.; Chaloner, T.; Gurr, S. Fungal and Oomycete cardinal temperatures (the Togashi dataset). Dryad 2020. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Ma, X.; Chen, W.; Zhang, J.; Duan, S.; Gao, Y.; Kui, L.; Huang, W.; Wu, P.; et al. The Genome Sequences of 90 Mushrooms. Sci. Rep. 2018, 8, 9982. [Google Scholar] [CrossRef]
- Li, Y.; Steenwyk, J.L.; Chang, Y.; Wang, Y.; James, T.Y.; Stajich, J.E.; Spatafora, J.W.; Groenewald, M.; Dunn, C.W.; Hittinger, C.T.; et al. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 2021, 31, 1653–1665.e1655. [Google Scholar] [CrossRef] [PubMed]
Group | Column | Description | Values |
---|---|---|---|
SPECIES | Name from Fungal Names | Uniform name from Fungal Names (https://nmdc.cn/fungalnames/) | Text |
Source name | Name of species as described in the source material | Text | |
Other name(s) | Other names by which this species is referred to in the relevant literature, if any | Text | |
GENOMES | Genome length | Reported length of the genome, in megabases | Real number |
Protein number | Reported number of proteins in the genome annotation | Integer | |
GC content | G+C percentage of the genome | Percentage number | |
Reference | Literature reference for additional genome data, if not included in NCBI or Mycocosm databases | Text | |
PROTEOMES | Proteome file source | Source of the full proteome file, if one is available: Uniprot reference dataset, and, if not available there, the NCBI genome resource, and, if not available there, the JGI Mycocosm database | Text |
number of proteins | Number of proteins in the proteome file | Integer | |
total number of amino acids | Total number of amino acids in the proteins in the proteome file | Integer | |
TEMPERATURE RANGE | Min | Minimum growth temperature as reported in the literature, as °C | Real number |
Max | Maximum growth temperature as reported in the literature, as °C | Real number | |
Basis | Basis for estimating minimum and maximum temperature (see Section 3.5) | Text | |
Reference | Reference for source of minimum and maximum growth temperature | Text | |
TOGASHI TEMPERATURE RANGE | Min | Minimum growth temperature as reported in the Togashi database, as °C | Real number |
Max | Maximum growth temperature as reported in the Togashi database, as °C | Real number | |
Number of entries in Togashi db | Number of entries in the Togashi database from which minimum and maximum growth temperatures were educed | Integer | |
COMBINED TEMPERATURES | MIN | Minimum of the estimates of minimum growth temperature, as °C | Real number |
MAX | Maximum of the estimates of maximum growth temperature, as °C | Real number | |
TAXONOMY | Complete taxonomy | Complete taxonomic description as listed in NBCI Taxonomy database | Text |
Clade | Top-level clade | Text | |
Subkingdom | Subkingdom (for fungi) | Text | |
Division | Division (for fungi) | Text | |
Order | Order where specified (for fungi) | Text |
Source | Relevant Data | URL | Access Dates |
---|---|---|---|
Google Scholar | Research-specific search engine | https://google.scholar.com | Varied dates in 2023 and 2024 |
NCBI Genome database | Data on genome sequence and coding capacity, proteomes | https://www.ncbi.nlm.nih.gov/datasets/ (used to be https://www.ncbi.nlm.nih.gov/genome/) | Varied dates in 2023 and 2024 |
Uniprot proteome database | Reference proteome data | https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes/Eukaryota/ | 20 June 2024 |
JGI Mycocosm | Fungal genome statistics, proteomes | https://mycocosm.jgi.doe.gov/mycocosm/home | Varied dates in 2023 and 2024 |
Fungal names | Fungal names and synonyms | https://nmdc.cn/fungalnames/ | Varied dates in 2023 and 2024 |
Undermind | AI-enabled literature search engine | https://www.undermind.ai/ | 27 December 2024 |
Togashi database | Detailed database on growth temperatures of fungi | https://datadryad.org/stash/dataset/doi:10.5061/dryad.tqjq2bvw6 | 28 August 2024 |
Search Type | Relevant Data |
---|---|
Literature first | (“fungi” OR “fungal”) AND “mycelial growth” AND (“maximum temperature” OR “minimum temperature” OR “cardinal temperature”) |
(“fungi” OR “fungal”) AND (“maximum growth temperature” OR “minimum growth temperature”) | |
Uniprot first | [fungal name] AND (“growth temperature” OR “cardinal temperature”) |
Genome | [fungal name] AND “genome sequence” |
Search Type | Relevant Data |
---|---|
Graph | Read from a graph of growth vs. temperature provided in the paper |
Stated | Maximum and minimum growth temperature stated in a paper, with or without accompanying graphical data |
Model | Temperature limits derived from Equation (1), as described above |
Togashi | Identified from the Togashi dataset, as described in Section 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bains, W. Linking Fungal Genomics to Thermal Growth Limits: A Dataset of 730 Sequenced Species. Data 2025, 10, 42. https://doi.org/10.3390/data10040042
Bains W. Linking Fungal Genomics to Thermal Growth Limits: A Dataset of 730 Sequenced Species. Data. 2025; 10(4):42. https://doi.org/10.3390/data10040042
Chicago/Turabian StyleBains, William. 2025. "Linking Fungal Genomics to Thermal Growth Limits: A Dataset of 730 Sequenced Species" Data 10, no. 4: 42. https://doi.org/10.3390/data10040042
APA StyleBains, W. (2025). Linking Fungal Genomics to Thermal Growth Limits: A Dataset of 730 Sequenced Species. Data, 10(4), 42. https://doi.org/10.3390/data10040042