Scalable Model-Based Diagnosis with FastDiag: A Dataset and Parallel Benchmark Framework
Abstract
1. Introduction
- A complete implementation and architectural analysis of FastDiag, Java-version FastDiagP, and FastDiagP++, emphasizing speculative parallelism.
- A reusable benchmark dataset with 60+ test cases, including CNF and ‘.prod’ inputs, and detailed logs.
- A validation framework for checking correctness, minimality, and recursive structure consistency.
- A comparative analysis against QuickXPlain and a real-world case study using feature model diagnosis [10].
2. Methods
2.1. FastDiag Algorithm Overview
2.2. Tracking Recursive Execution
2.3. Parallel Extensions: Java-version FastDiagP and FastDiagP++
2.4. Implementation Summary
3. Dataset Structure and Organization
4. Case Study: Diagnosis in Feature Model Configuration
- Navigation_System→High_Bandwidth_Bus;
- Basic_UI→¬High_Bandwidth_Bus.
- Detect unintended feature interactions;
- Document trade-offs (e.g., performance vs. cost);
- Generate consistent alternative configurations by deactivating one feature or modifying constraints.
5. Usage Notes
5.1. Benchmarking and Algorithmic Comparison
5.2. Educational Applications
5.3. Reproducibility and Customization
6. Technical Validation and Benchmarking Results
6.1. Correctness and Minimality Verification
6.2. Recursion Depth Analysis
6.3. Runtime Comparison
6.4. Benchmark Summary
7. Conclusions
- FastDiag: a sequential diagnosis method based on recursive decomposition;
- Java-version FastDiagP: a speculative extension with asynchronous task dispatching;
- FastDiagP++: a multiprocessing-based version leveraging Python’s process pools.
- Algorithmic development and regression testing;
- Runtime profiling across diagnosis strategies;
- Hands-on instruction in model-based reasoning courses.
Maintenance and Roadmap
- Annual updates with new benchmark instances, including both synthetic and real-world models.
- Integration of additional diagnosis strategies (e.g., Inv-QX, HSDAG, ML-assisted refinements).
- Community contributions via GitHub pull requests and issue tracking.
- Migration to standardized formats (e.g., JSON-LD) for enhanced interoperability.
- Improved support for educational deployment, including new tutorial notebooks and assignments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Felfernig, A.; Schubert, M.; Zehentner, C. An Efficient Diagnosis Algorithm for Inconsistent Constraint Sets. Artif. Intell. Eng. Des. Anal. Manuf. 2012, 26, 53–62. [Google Scholar] [CrossRef]
- Grau, B.C.; Horrocks, I.; Motik, B.; Parsia, B.; Sattler, U. OWL 2: The next step for OWL. J. Web Semant. 2008, 6, 309–322. [Google Scholar] [CrossRef]
- Smith, B.; Ceusters, W.; Klagges, B.; Köhler, J.; Kumar, A.; Lomax, J.; Mungall, C.; Neuhaus, F.; Rector, A.L.; Rosse, C. Relations in biomedical ontologies. Genome Biol. 2005, 6, R46. [Google Scholar] [CrossRef]
- Kazakov, Y.; Krötzsch, M.; Simančík, F. Concurrent Classification of EL Ontologies. In Proceedings of the International Semantic Web Conference, Boston, MA, USA, 11–15 November 2012; pp. 305–320. [Google Scholar] [CrossRef]
- Vidal-Silva, C.; Cardenas-Cobo, J.; Ortiz, A.S.; Duarte, V.; Tupac-Yupanqui, M. Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions. IEEE Access 2022, 10, 134318–134332. [Google Scholar] [CrossRef]
- Junker, U. QuickXPlain: Preferred Explanations and Relaxations for Over-Constrained Problems. In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI), San Jose, CA, USA, 25–29 July 2004; pp. 167–172. [Google Scholar]
- Le, V.M.; Vidal-Silva, C.; Felfernig, A.; Benavides, D.; Galindo, J.A.; Tran, T.N.T. FASTDIAGP: An Algorithm for Parallelized Direct Diagnosis. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2023), Washington, DC, USA, 7–14 February 2023; Williams, B., Chen, Y., Neville, J., Eds.; AAAI Press: Washington, DC, USA, 2023; pp. 6442–6449. [Google Scholar] [CrossRef]
- Osama, M.; Wijs, A. Parallel SAT Simplification on GPU Architectures. In Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2019), Prague, Czech Republic, 6–11 April 2019; Vojnar, T., Zhang, L., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2019; Volume 11427, pp. 25–42. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y. Simple parallel algorithms for single-site dynamics. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, 20–24 June 2022; STOC: New York, NY, USA, 2022; pp. 1431–1444. [Google Scholar] [CrossRef]
- Vidal-Silva, C.; Duarte, V.; Cárdenas-Cobo, J.; García, L.J. Speculative computing for AAFM solutions in large-scale product configurations. Sci. Rep. 2024, 14, 11182. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Shetty, A.; Ehtesham, A.; Kumar, S.; Khoei, T.T. A Survey of Large Language Model-Based Generative AI for Text-to-SQL: Benchmarks, Applications, Use Cases, and Challenges. In Proceedings of the 2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2025; pp. 00015–00021. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Jan Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, W.; Raghupathi, V.; Ren, J. Reproducibility in Computing Research: An Empirical Study. IEEE Access 2022, 10, 29207–29223. [Google Scholar] [CrossRef]
- Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Larochelle, H. Improving reproducibility in machine learning research (a report from the NeurIPS 2019 reproducibility program). J. Mach. Learn. Res. 2021, 22, 1–20. [Google Scholar]
- Benavides, D.; Trinidad, P.; Ruiz-Cortés, A. Automated analysis of feature models 20 years later: A literature review. In Proceedings of the Information Systems, Porto, Portugal, 18–20 March 2010; Volume 35, pp. 615–636. [Google Scholar] [CrossRef]
- Vidal-Silva, C.; Cárdenas-Cobo, J.; Tupac-Yupanqui, M.; Serrano-Malebrán, J.; Sánchez Ortiz, A. Developing Programming Competencies in School-Students With Block-Based Tools in Chile, Ecuador, and Peru. IEEE Access 2024, 12, 118924–118936. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, S.; Chen, Y.; Song, Y.; Wu, R.; Sun, L. ChatScratch: An AI-Augmented System Toward Autonomous Visual Programming Learning for Children Aged 6–12. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24), Honolulu, HI, USA, 11–16 May 2024; pp. 1–19. [Google Scholar] [CrossRef]
- Pill, I.; de Kleer, J. Challenges for Model-Based Diagnosis. In Proceedings of the 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024), Vienna, Austria, 4–7 November 2024; Open Access Series in Informatics (OASIcs). Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Dagstuhl, Germany, 2024; Volume 125, pp. 6:1–6:20. [Google Scholar] [CrossRef]
- Bartels, B.; Kleine, M. A CSP-based framework for the specification, verification, and implementation of adaptive systems. In Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), Honolulu, HI, USA, 23–24 May 2011; ACM: New York, NY, USA, 2011; pp. 158–167. [Google Scholar] [CrossRef]
- Shchekotykhin, K.; Friedrich, G.; Fleiss, P.; Rodler, P. Sequential Diagnosis of Ontologies. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14), Québec City, QC, Canada, 27–31 July 2014; AAAI Press: Washington, DC, USA, 2014; pp. 235–241. [Google Scholar]
Challenge | Impact | Affected Algorithms |
---|---|---|
Sequential Recursion | Limits CPU core usage | QuickXPlain, FastDiag |
Deep Recursion Trees | Increased stack and time cost | QuickXPlain |
No Memoization | Repeated consistency checks | FastDiag, HST |
No Batch Scheduling | Idle time in multicore CPUs | All sequential |
Variant | Strategy | Parallelism | Backend |
---|---|---|---|
FastDiag | Recursive Split | None | Single-threaded recursion |
Java-version FastDiagP | Speculative Forking | Thread simulation | In-process recursion |
FastDiagP++ | True Multiprocessing | Process pool (forked) | multiprocessing.Pool |
Filename | Description |
---|---|
model_1.cnf | Sample CNF ontology file (Model 1) |
prod-1-0.prod | Production rule configuration (Instance 1) |
resultFD.csv | Aggregated execution results in CSV |
resultFDFinal.xlsm | Final summary with post-processing macros |
Model | Method | Runtime (ms) | Max Depth | Diagnoses Found |
---|---|---|---|---|
FAMA1 | FastDiag | 1072 | 9 | 1 |
Java-version FastDiagP | 498 | 9 | 1 | |
FastDiagP++ | 275 | 9 | 1 | |
FAMA2 | FastDiag | 1893 | 13 | 1 |
Java-version FastDiagP | 808 | 13 | 1 | |
FastDiagP++ | 489 | 13 | 1 | |
AAFM | FastDiag | 3560 | 16 | 1 |
Java-version FastDiagP | 1497 | 16 | 1 | |
FastDiagP++ | 880 | 16 | 1 |
Script | Description |
---|---|
executeBenchFD.py | Run full benchmark with configurable solver |
validateFDoutput.py | Check diagnosis correctness and structure |
plotFDresults.ipynb | Jupyter Notebook 7.0.0 for plotting performance |
customFaultInjector.py | Injects synthetic faults into ‘.prod’ models |
Model | Variant | Runtime (ms) | Max Depth | Minimal Diagnoses |
---|---|---|---|---|
FAMA1 | FastDiag | 1072 | 12 | 1 |
Java-version FastDiagP | 498 | 12 | 1 | |
FastDiagP++ | 275 | 12 | 1 | |
FAMA2 | FastDiag | 1893 | 15 | 2 |
Java-version FastDiagP | 808 | 15 | 2 | |
FastDiagP++ | 489 | 15 | 2 | |
AAFM | FastDiag | 3560 | 18 | 3 |
Java-version FastDiagP | 1497 | 18 | 3 | |
FastDiagP++ | 880 | 18 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión León, D.I.; Vidal-Silva, C.; Márquez, N. Scalable Model-Based Diagnosis with FastDiag: A Dataset and Parallel Benchmark Framework. Data 2025, 10, 141. https://doi.org/10.3390/data10090141
Carrión León DI, Vidal-Silva C, Márquez N. Scalable Model-Based Diagnosis with FastDiag: A Dataset and Parallel Benchmark Framework. Data. 2025; 10(9):141. https://doi.org/10.3390/data10090141
Chicago/Turabian StyleCarrión León, Delia Isabel, Cristian Vidal-Silva, and Nicolás Márquez. 2025. "Scalable Model-Based Diagnosis with FastDiag: A Dataset and Parallel Benchmark Framework" Data 10, no. 9: 141. https://doi.org/10.3390/data10090141
APA StyleCarrión León, D. I., Vidal-Silva, C., & Márquez, N. (2025). Scalable Model-Based Diagnosis with FastDiag: A Dataset and Parallel Benchmark Framework. Data, 10(9), 141. https://doi.org/10.3390/data10090141