Lateral Root and Nodule Transcriptomes of Soybean
Abstract
:1. Summary
2. Data Description
2.1. Overview of the Transcriptome Libraries
2.2. Predominant Mapping to Coding Sequences and Consistency among Replicates in Our Libraries
2.3. Mature Nodules Had the Largest Difference in Global Gene Expression Patterns
3. Methods
3.1. Plant Material and RNA Isolation
3.2. Transcriptome Library Preparation and Sequencing
3.3. Quality Control of Raw Reads
3.4. Read Alignment and Assembly
3.5. Singular Enrichment Analysis
4. User Notes
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Smet, I. Lateral root initiation: One step at a time. New Phytol. 2012, 193, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Sozzani, R.; Iyer-Pascuzzi, A. Postembryonic control of root meristem growth and development. Curr. Opin. Plant Biol. 2014, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.M. Developmental Biology of Legume Nodulation. New Phytol. 1992, 122, 211–237. [Google Scholar] [CrossRef]
- Mathesius, U. Conservation and divergence of signalling pathways between roots and soil microbes—The Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 2003, 255, 105–119. [Google Scholar] [CrossRef]
- Franssen, H.J.; Xiao, T.T.; Kulikova, O.; Wan, X.; Bisseling, T.; Scheres, B.; Heidstra, R. Root developmental programs shape the Medicago truncatula nodule meristem. Development (Cambridge) 2015, 142, 2941–2950. [Google Scholar] [CrossRef] [Green Version]
- Couzigou, J.M.; Zhukov, V.; Mondy, S.; Abu el Heba, G.; Cosson, V.; Ellis, T.H.; Ambrose, M.; Wen, J.; Tadege, M.; Tikhonovich, I.; et al. NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 2012, 24, 4498–4510. [Google Scholar] [CrossRef]
- Hirsch, A.M.; Larue, T.A.; Doyle, J. Is the Legume Nodule a Modified Root or Stem or an Organ sui generis? Crit. Rev. Plant Sci. 1997, 16, 361–392. [Google Scholar] [CrossRef]
- Malamy, J.E.; Benfey, P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development (Cambridge) 1997, 124, 33–44. [Google Scholar]
- Herrbach, V.; Remblière, C.; Gough, C.; Bensmihen, S. Lateral root formation and patterning in Medicago truncatula. J. Plant Physiol. 2014, 171, 301–310. [Google Scholar] [CrossRef]
- Allen, O.N.; Allen, E.K. Response of the Peanut Plant to Inoculation with Rhizobia, with Special Reference to Morphological Development of the Nodules. Bot. Gaz. 1940, 102, 121–142. [Google Scholar] [CrossRef]
- Bond, L. Origin and Development Morphology of Root Nodules of Pisum sativum. Bot. Gaz. 1948, 109, 411–434. [Google Scholar] [CrossRef]
- Desbrosses, G.J.; Stougaard, J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011, 10, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Swarup, K.; Benkova, E.; Swarup, R.; Casimiro, I.; Peret, B.; Yang, Y.; Parry, G.; Nielsen, E.; De Smet, I.; Vanneste, S.; et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 2008, 10, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Casimiro, I.; Marchant, A.; Bhalerao, R.P.; Beeckman, T.; Dhooge, S.; Swarup, R.; Graham, N.; Inze, D.; Sandberg, G.; Casero, P.J.; et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 2001, 13, 843–852. [Google Scholar] [CrossRef]
- Suzaki, T.; Yano, K.; Ito, M.; Umehara, Y.; Suganuma, N.; Kawaguchi, M. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development (Cambridge) 2012, 139, 3997–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.; Nizampatnam, N.R.; Baron, M.; Coppin, S.; Damodaran, S.; Adhikari, S.; Arunachalam, S.P.; Yu, O.; Subramanian, S. Ectopic Expression of miR160 Results in Auxin Hypersensitivity, Cytokinin Hyposensitivity, and Inhibition of Symbiotic Nodule Development in Soybean. Plant Physiol. 2013, 162, 2042–2055. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rizzo, S.; Crespi, M.; Frugier, F. The Medicago truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium meliloti. Plant Cell Online 2006, 18, 2680–2693. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.D.; Karas, B.J.; Sato, S.; Tabata, S.; Amyot, L.; Szczyglowski, K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science (New York) 2007, 315, 101–104. [Google Scholar] [CrossRef]
- Plet, J.; Wasson, A.; Ariel, F.; Le Signor, C.; Baker, D.; Mathesius, U.; Crespi, M.; Frugier, F. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 2011, 65, 622–633. [Google Scholar] [CrossRef] [Green Version]
- Bielach, A.; Podlešáková, K.; Marhavý, P.; Duclercq, J.; Cuesta, C.; Müller, B.; Grunewald, W.; Tarkowski, P.; Benková, E. Spatiotemporal Regulation of Lateral Root Organogenesis in Arabidopsis by Cytokinin. Plant Cell Online 2012, 24, 3967–3981. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mo, X.; Shou, H.; Wu, P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol. 2006, 47, 1112–1123. [Google Scholar] [CrossRef]
- Laplaze, L.; Benkova, E.; Casimiro, I.; Maes, L.; Vanneste, S.; Swarup, R.; Weijers, D.; Calvo, V.; Parizot, B.; Herrera-Rodriguez, M.B.; et al. Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell Online 2007, 19, 3889–3900. [Google Scholar] [CrossRef]
- Kouchi, H.; Shimomura, K.; Hata, S.; Hirota, A.; Wu, G.J.; Kumagai, H.; Tajima, S.; Suganuma, N.; Suzuki, A.; Aoki, T.; et al. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2004, 11, 263–274. [Google Scholar] [CrossRef]
- Limpens, E.; Moling, S.; Hooiveld, G.; Pereira, P.A.; Bisseling, T.; Becker, J.D.; Kuster, H. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS ONE 2013, 8, e64377. [Google Scholar] [CrossRef] [PubMed]
- Takanashi, K.; Takahashi, H.; Sakurai, N.; Sugiyama, A.; Suzuki, H.; Shibata, D.; Nakazono, M.; Yazaki, K. Tissue-specific transcriptome analysis in nodules of Lotus japonicus. Mol. Plant-Microbe Interact. 2012, 25, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Benedito, V.A.; Torres-Jerez, I.; Murray, J.D.; Andriankaja, A.; Allen, S.; Kakar, K.; Wandrey, M.; Verdier, J.; Zuber, H.; Ott, T.; et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. Cell Mol. Biol. 2008, 55, 504–513. [Google Scholar] [CrossRef]
- Brechenmacher, L.; Kim, M.-Y.; Benitez, M.; Li, M.; Joshi, T.; Calla, B.; Lee, M.P.; Libault, M.; Vodkin, L.O.; Xu, D.; et al. Transcription Profiling of Soybean Nodulation by Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 2008, 21, 631–645. [Google Scholar] [CrossRef]
- Libault, M.; Farmer, A.; Joshi, T.; Takahashi, K.; Langley, R.J.; Franklin, L.D.; He, J.; Xu, D.; May, G.; Stacey, G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010, 63, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Libault, M.; Zhang, X.-C.; Govindarajulu, M.; Qiu, J.; Ong, Y.T.; Brechenmacher, L.; Berg, R.H.; Hurley-Sommer, A.; Taylor, C.G.; Stacey, G. A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J. 2010, 62, 852–864. [Google Scholar] [CrossRef] [Green Version]
- Ott, T.; van Dongen, J.T.; Gu¨nther, C.; Krusell, L.; Desbrosses, G.; Vigeolas, H.; Bock, V.; Czechowski, T.; Geigenberger, P.; Udvardi, M.K. Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Curr. Biol. 2005, 15, 531–535. [Google Scholar] [CrossRef] [Green Version]
- Heckmann, A.B.; Lombardo, F.; Miwa, H.; Perry, J.A.; Bunnewell, S.; Parniske, M.; Wang, T.L.; Downie, J.A. Lotus japonicus Nodulation Requires Two GRAS Domain Regulators, One of Which Is Functionally Conserved in a Non-Legume. Plant Physiol. 2006, 142, 1739–1750. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, A.B.; Sandal, N.; Bek, A.S.; Madsen, L.H.; Jurkiewicz, A.; Nielsen, M.W.; Tirichine, L.; Stougaard, J. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol. Plant-Microbe Interact. 2011, 24, 1385–1395. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Roussis, A.; Katinakis, P. Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: Expression during nodule and lateral root development. Plant Mol. Biol. 1996, 30, 403–417. [Google Scholar] [CrossRef]
- Smith, D.L.; Fedoroff, N.V. LRP1, a gene expressed in lateral and adventitious root primordia of arabidopsis. Plant Cell Online 1995, 7, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Parizot, B.; De Rybel, B.; Beeckman, T. VisuaLRTC: A New View on Lateral Root Initiation by Combining Specific Transcriptome Data Sets. Plant Physiol. 2010, 153, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dai, X.; Liu, T.; Zhao, P.X. LegumeIP: An integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res. 2012, 40, D1221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, J.; White, K.P. RNA-seq differential expression studies: More sequence or more replication? Bioinformatics (Oxford) 2014, 30, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Fu, Y.; Sunkar, R.; Barbazuk, W.B.; Zhu, J.-K.; Yu, O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom. 2008, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, W.J.M. Vincent, A Manual for the Practical Study of the Root-Nodule Bacteria (IBP Handbuch No. 15 des International Biology Program, London). XI u. 164 S., 10 Abb., 17 Tab., 7 Taf. Oxford-Edinburgh 1970: Blackwell Scientific Publ., 45 s. Zeitschrift für Allgemeine Mikrobiologie 1972, 12, 440. [Google Scholar] [CrossRef]
- Bhuvaneswari, T.V.; Turgeon, B.G.; Bauer, W.D. Early Events in the Infection of Soybean (Glycine max L. Merr) by Rhizobium japonicum: I. LOCALIZATION OF INFECTIBLE ROOT CELLS. Plant Physiol. 1980, 66, 1027–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pease, J.; Sooknanan, R. A rapid, directional RNA-seq library preparation workflow for Illumina[reg] sequencing. Nat. Methods 2012, 9. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics (Oxford) 2011, 27, 863–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford) 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canales, J.; Moyano, T.C.; Villarroel, E.; Gutiérrez, R.A. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Front. Plant Sci. 2014, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Gong, Q.; Bohnert, H.J. An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 2007, 17, 1614–1625. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Guegler, K.; LaBrie, S.T.; Crawford, N.M. Genomic Analysis of a Nutrient Response in Arabidopsis Reveals Diverse Expression Patterns and Novel Metabolic and Potential Regulatory Genes Induced by Nitrate. Plant Cell 2000, 12, 1491–1510. [Google Scholar] [CrossRef] [Green Version]
- Palenchar, P.M.; Kouranov, A.; Lejay, L.V.; Coruzzi, G.M. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol. 2004, 5, R91. [Google Scholar] [CrossRef]
- Gutiérrez, R.A.; Lejay, L.V.; Dean, A.; Chiaromonte, F.; Shasha, D.E.; Coruzzi, G.M. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol. 2007, 8, R7. [Google Scholar] [CrossRef]
- Cvrčková, F.; Bezvoda, R.; Žárský, V. Computational identification of root hair-specific genes in Arabidopsis. Plant Signal. Behav. 2010, 5, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, S.; Lin, Y.-C.; Parizot, B.; Fernandez, A.; Njo, M.F.; Van de Peer, Y.; Beeckman, T.; Hilson, P. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. J. Exp. Bot. 2015, 66, 5257–5269. [Google Scholar] [CrossRef] [PubMed]
- Ehlting, J.; Chowrira, S.G.; Mattheus, N.; Aeschliman, D.S.; Arimura, G.; Bohlmann, J. Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling. BMC Genom. 2008, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Joshi, T.; Stacey, G. System approaches to study root hairs as a single cell plant model: current status and future perspectives. Front. Plant Sci. 2015, 6, 363. [Google Scholar] [CrossRef]
- Lan, P.; Li, W.; Lin, W.D.; Santi, S.; Schmidt, W. Mapping gene activity of Arabidopsis root hairs. Genome Biol. 2013, 14, R67. [Google Scholar] [CrossRef] [PubMed]
- Iniguez, L.P.; Ramirez, M.; Barbazuk, W.B.; Hernandez, G. Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genom. 2017, 18, 650. [Google Scholar] [CrossRef] [PubMed]
Transcript ID | Annotation | Expression Levels (FPKM) and Enrichment 1 | |||
---|---|---|---|---|---|
EN | MN | ELR | YLR | ||
Nodule marker genes | |||||
Glyma09g31910.1 | FWL1 | 152.0 (0.0) | 1267.6 (8.0) c | 0.0 (0.0) | 0.0 (0.0) |
Glyma02g04180.1 | Enod40 | 1482.2 (2.9) c | 1799.5 (4.7) c | 12.4 (−1.0) | 13.2 (−2.3) |
Glyma10g34290.1 | LBC_A | 0.2 (0.0) | 9191.6 (8.8) c | 0.0 (0.0) | 0.0 (0.0) |
Glyma10g34280.1 | LBC_C1 | 0.7 (0.0) | 9839.5 (9.0) c | 0.0 (0.0) | 0.0 (0.0) |
Glyma20g33290.1 | LBC_C2 | 27.9 (3.2) | 6968.7 (9.0) c | 0.0 (0.0) | 0.0 (0.0) |
Glyma10g34260.1 | LBC_C3 | 19.3 (0.0) | 12680.1 (9.0) c | 0.0 (0.0) | 0.0 (0.0) |
Glyma04g00210.3 | NIN1 | 16.7 (0.0) | 84.8 (0.0) | 0.0 (0.0) | 0.2 (0.0) |
Glyma16g01020.1 | NSP1 | 9.8 (3.5) c | 19.7 (5.5) c | 0.4 (0.0) | 0.7 (0.0) |
Lateral root marker genes | |||||
Glyma14g40540.1 | ARF5 | 6.7 (0.0) | 0.9 (−1.5) | 2.9 (0.0) | 2.6 (0.0) |
Glyma17g37580.1 | ARF5 | 12.6 (0.0) | 2.5 (0.0) | 6.3 (1.0) a | 6.3 (0.0) |
Glyma05g37120.1 | CRF2 | 1.0 (0.0) | 2.2 (0.0) | 3.7 (2.0) c | 1.6 (3.7) c |
Glyma08g02460.1 | CRF2 | 4.1 (0.0) | 7.2 (0.0) | 9.0 (1.9) c | 6.1 (2.8) c |
Glyma03g39220.1 | GATA23 | 0.0 (0.0) | 0.1 (0.0) | 0.1 (0.0) | 0.0 (0.0) |
Glyma19g41780.2 | GATA23 | 4.5 (0.0) | 6.3 (0.0) | 6.9 (0.0) | 5.0 (0.0) |
Glyma02g44860.2 | LRP1 | 19.5 (0.0) | 8.6 (0.0) | 11.3 (0.0) | 6.1 (0.0) |
Glyma07g35780.2 | LRP1 | 11.3 (0.0) | 6.0 (0.0) | 5.0 (0.0) | 3.3 (0.0) |
Glyma14g03900.1 | LRP1 | 24.8 (0.0) | 9.8 (0.0) | 21.4 (0.7) a | 9.4 (0.0) |
Glyma07g11550.1 | PIN1 | 7.7 (0.0) | 2.2 (−2.6) | 24.7 (1.0) b | 22.6 (0.0) |
Glyma08g05900.1 | PIN1 | 8.2 (0.0) | 2.2 (0.0) | 19.6 (1.5) c | 9.6 (0.0) |
Glyma09g30700.1 | PIN1 | 7.8 (−1.0) | 1.7 (−3.2) | 15.5 (0.0) | 12.6 (0.0) |
Glyma04g34080.1 | TMO7 | 0.0 (0.0) | 0.0 (0.0) | 5.2 (2.7) a | 11.5 (5.0) a |
Glyma06g20400.1 | TMO7 | 0.2 (0.0) | 0.0 (0.0) | 23.9 (2.3) c | 26.7 (0.0) |
Housekeeping genes | |||||
Glyma02g10170.1 | Actin11 | 149.7 (0.0) | 102.5 (0.0) | 204.5 (0.0) | 223.8 (0.0) |
Glyma12g02310.1 | Cons4 | 14.1 (0.0) | 20.4 (0.0) | 17.9 (0.0) | 28.5 (0.0) |
Glyma12g05510.1 | Cons6 | 24.2 (0.0) | 28.3 (0.0) | 36.6 (0.0) | 19.4 (0.0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, S.; Damodaran, S.; Subramanian, S. Lateral Root and Nodule Transcriptomes of Soybean. Data 2019, 4, 64. https://doi.org/10.3390/data4020064
Adhikari S, Damodaran S, Subramanian S. Lateral Root and Nodule Transcriptomes of Soybean. Data. 2019; 4(2):64. https://doi.org/10.3390/data4020064
Chicago/Turabian StyleAdhikari, Sajag, Suresh Damodaran, and Senthil Subramanian. 2019. "Lateral Root and Nodule Transcriptomes of Soybean" Data 4, no. 2: 64. https://doi.org/10.3390/data4020064
APA StyleAdhikari, S., Damodaran, S., & Subramanian, S. (2019). Lateral Root and Nodule Transcriptomes of Soybean. Data, 4(2), 64. https://doi.org/10.3390/data4020064