A High-Resolution Map of Singapore’s Terrestrial Ecosystems
Abstract
:Abstract
Dataset
Dataset License
1. Summary
2. Data Description
2.1. Data
2.2. Accuracy Assessment
2.3. Data in Perspective
3. Methods
3.1. Data Acquisition
3.2. Image Pre-Processing
3.3. Image Classification
4. User Notes
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Tan, P.Y.; Edwards, P.; Richards, D. The economic benefits and costs of trees in urban forest stewardship: A systematic review. Urban For. Urban Green. 2018, 29, 162–170. [Google Scholar] [CrossRef]
- Hoellein, T.; Rojas, M.; Pink, A.; Gasior, J.; Kelly, J. Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions. PLoS ONE 2014, 9, e98485. [Google Scholar] [CrossRef]
- Freeman, C. Geographic information systems and the conservation of urban biodiversity. Urban Policy Res. 1999, 17, 51–60. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Thiagarajah, J.; Wong, S.K.M.; Richards, D.R.; Friess, D.A. Historical and contemporary cultural ecosystem service values in the rapidly urbanizing city state of Singapore. Ambio 2015, 44, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Busetto, L.; Meroni, M.; Colombo, R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sens. Environ. 2008, 112, 118–131. [Google Scholar] [CrossRef]
- Yee, A.T.K.; Corlett, R.T.; Liew, S.C.; Tan, H.T.W. The vegetation of Singapore―An updated map. Gard. Bull. Singap. 2011, 63, 205–212. [Google Scholar]
- Fuller, R.M.; Groom, G.B.; Jones, A.R. The land-cover map of great Britain: An automated classification of landsat thematic mapper data. Photogramm. Eng. Remote. Sens. 1994, 60, 553–562. [Google Scholar]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Randall, M.; Fensholt, R.; Zhang, Y.; Bergen Jensen, M. Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale. Water 2019, 11, 1133. [Google Scholar] [CrossRef]
- Yee, A.T.K.; Chong, K.Y.; Neo, L.; Tan, H.T.W. Updating the classification system for the secondary forests of Singapore. Raffles Bull. Zool. 2016, 32, 11–21. [Google Scholar]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Singapore Land Authority (SLA). Total Land Area of Singapore. Available online: https://data.gov.sg/dataset/total-land-area-of-singapore (accessed on 24 April 2019).
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). ArcGIS Release 10.5; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2016. [Google Scholar]
- Environmental Systems Research Institute (ESRI). Apparent Reflectance Function. Available online: http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/apparent-reflectance-function.htm (accessed on 2 May 2019).
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). Segment Mean Shift Function. Available online: http://desktop.arcgis.com/en/arcmap/10.5/manage-data/raster-and-images/segment-mean-shift-function.htm (accessed on 24 April 2019).
- Butler, K. Pass the Classification but Hold the Salt and Pepper. Available online: https://www.esri.com/arcgis-blog/products/product/national-government/pass-the-classification-but-hold-the-salt-and-pepper/ (accessed on 17 July 2019).
- DigitalGlobe. WorldView-3 Data Sheet. Available online: http://satimagingcorp.s3.amazonaws.com/site/pdf/WorldView3-DS-WV3-Web.pdf (accessed on 17 July 2019).
- Satellite Imaging Corporation. QuickBird Imagery Products FAQ. Available online: http://satimagingcorp.s3.amazonaws.com/site/pdf/quickbird_imagery_products.pdf (accessed on 17 July 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- OpenStreetMap. OpenStreetMap of Singapore. Available online: https://www.openstreetmap.org/search?query=singapore#map=12/ 1.2905/103.8520 (accessed on 5 April 2018).
- Public Utilities Board (PUB). Drainage Network. Available online: https://www.pub.gov.sg/drainage/network (accessed on 24 April 2019).
- Environmental Systems Research Institute (ESRI). About Using the Raster Painting Tools. Available online: http://desktop.arcgis.com/en/arcmap/10.5/extensions/arcscan/using-the-raster-painting-tools-about-using-the-ra.htm (accessed on 24 April 2019).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Sample Design Considerations. In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: New York, NY, USA, 2009; pp. 63–103. [Google Scholar]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Zhang, C.; Hanink, D.M.; Li, X.; Wang, W. Parcel-based urban land use classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google Street View. Comput. Environ. Urban Syst. 2017, 64, 215–228. [Google Scholar] [CrossRef] [Green Version]
Map Class | Code | Area (km2) | Percentage of Land Area (%) |
---|---|---|---|
Buildings | 1 | 91.1 | 12.3 |
Artificial impervious surfaces | 2 | 193.0 | 26.0 |
Non-vegetated pervious surfaces | 3 | 53.0 | 7.1 |
Vegetation with limited human management (with Tree Canopy) | 4 | 139.0 | 18.7 |
Vegetation with limited human management (without Tree Canopy) | 5 | 14.1 | 1.9 |
Vegetation with structure dominated by human management (with Tree Canopy) | 6 | 82.8 | 11.1 |
Vegetation with structure dominated by human management (without Tree Canopy) | 7 | 112.5 | 15.1 |
Freshwater swamp forest | 8 | 2.2 | 0.3 |
Freshwater marsh | 9 | 0.4 | 0.1 |
Mangrove forest | 10 | 8.1 | 1.1 |
Water courses | 11 | 8.2 | 1.1 |
Water bodies | 12 | 38.4 | 5.2 |
Marine | 13 | 647.4 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total | UA | CE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 71 | 4 | 2 | 77 | 92% | 8% | |||||||||
2 | 8 | 68 | 16 | 3 | 1 | 8 | 104 | 65% | 35% | ||||||
3 | 7 | 53 | 4 | 1 | 65 | 82% | 18% | ||||||||
4 | 3 | 78 | 3 | 5 | 1 | 1 | 1 | 92 | 85% | 15% | |||||
5 | 1 | 18 | 19 | 95% | 5% | ||||||||||
6 | 1 | 3 | 6 | 65 | 1 | 1 | 77 | 84% | 16% | ||||||
7 | 1 | 2 | 46 | 8 | 80 | 137 | 58% | 42% | |||||||
8 | 1 | 36 | 6 | 43 | 84% | 16% | |||||||||
9 | 7 | 7 | 100% | 0% | |||||||||||
10 | 63 | 2 | 65 | 97% | 3% | ||||||||||
11 | 3 | 26 | 9 | 77 | 2 | 117 | 66% | 34% | |||||||
12 | 1 | 76 | 77 | 99% | 1% | ||||||||||
Total | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 40 | 40 | 80 | 80 | 80 | 880 | ||
PA | 89% | 85% | 66% | 98% | 23% | 81% | 100% | 90% | 18% | 79% | 96% | 95% | Overall | 79% | |
OE | 11% | 15% | 34% | 3% | 78% | 19% | 0% | 10% | 83% | 21% | 4% | 5% | Kappa | 77% |
Sensor | Image ID | Date | Time (GMT+8) | Wavelength (nm) | Coverage (%) |
---|---|---|---|---|---|
WorldView-3 | 308 | 18 Feb 18 | 1138 h | 400–1040 | 0.17 |
WorldView-3 | 302 | 10 Feb 18 | 1158 h | 400–1040 | 31.07 |
WorldView-3 | 305 | 10 Feb 18 | 1157 h | 400–1040 | 19.99 |
WorldView-3 | 307 | 10 Feb 18 | 1158 h | 400–1040 | 7.38 |
WorldView-3 | 306 | 15 Nov 17 | 1106 h | 400–1040 | 9.56 |
WorldView-3 | 301 | 5 May 17 | 1152 h | 400–1040 | 11.97 |
WorldView-3 | 304 | 12 Nov 16 | 1145 h | 400–1040 | 1.88 |
WorldView-3 | 303 | 29 Jun 16 | 1141 h | 400–1040 | 1.18 |
WorldView-2 | 208 | 19 Apr 15 | 1136 h | 400–1040 | 1.00 |
WorldView-2 | 203 | 23 Mar 15 | 1134 h | 400–1040 | 0.01 |
WorldView-2 | 207 | 23 Mar 15 | 1133 h | 400–1040 | 0.67 |
WorldView-2 | 206 | 17 Jan 15 | 1133 h | 400–1040 | 1.97 |
WorldView-2 | 201 | 14 Jun 12 | 1143 h | 400–1040 | 0.27 |
WorldView-2 | 202 | 18 Jul 11 | 1149 h | 400–1040 | 0.26 |
WorldView-2 | 204 | 8 Apr 11 | 1143 h | 400–1040 | 0.11 |
WorldView-2 | 205 | 19 Nov 10 | 1138 h | 400–1040 | 0.11 |
QuickBird | 901 | 16 Oct 03 | 1115 h | 450–900 | 0.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaw, L.Y.-F.; Yee, A.T.K.; Richards, D.R. A High-Resolution Map of Singapore’s Terrestrial Ecosystems. Data 2019, 4, 116. https://doi.org/10.3390/data4030116
Gaw LY-F, Yee ATK, Richards DR. A High-Resolution Map of Singapore’s Terrestrial Ecosystems. Data. 2019; 4(3):116. https://doi.org/10.3390/data4030116
Chicago/Turabian StyleGaw, Leon Yan-Feng, Alex Thiam Koon Yee, and Daniel Rex Richards. 2019. "A High-Resolution Map of Singapore’s Terrestrial Ecosystems" Data 4, no. 3: 116. https://doi.org/10.3390/data4030116
APA StyleGaw, L. Y. -F., Yee, A. T. K., & Richards, D. R. (2019). A High-Resolution Map of Singapore’s Terrestrial Ecosystems. Data, 4(3), 116. https://doi.org/10.3390/data4030116