FIKWater: A Water Consumption Dataset from Three Restaurant Kitchens in Portugal
Abstract
:1. Summary
Relation to Prior Datasets
2. Methods
2.1. Data Collection Hardware
2.2. Monitoring Platform
2.3. Deployments
2.4. Data Labeling
3. Data Description
3.1. Demand Data
3.2. Labels Data
3.3. Deployments
4. Data Exploration and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSV | Comma Separated Values |
FIK | Future Industrial Kitchen |
IK | Industrial Kitchen |
IoT | Internet of Things |
OSF | Open Science Framework |
RTC | Real Time Clock |
References
- Froehlich, J.E.; Larson, E.; Campbell, T.; Haggerty, C.; Fogarty, J.; Patel, S.N. HydroSense: Infrastructure-mediated single-point sensing of whole-home water activity. In Proceedings of the 11th International Conference on Ubiquitous Computing, UbiComp ’09, Orlando, FL, USA, 30 September–3 October 2009; Association for Computing Machinery: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Richter, C.P.; Stamminger, R. Water Consumption in the Kitchen—A Case Study in Four European Countries. Water Resour. Manag. 2012, 26, 1639–1649. [Google Scholar] [CrossRef]
- Ellert, B.; Makonin, S.; Popowich, F. Appliance Water Disaggregation via Non-intrusive Load Monitoring (NILM). In Smart City 360∘; Leon-Garcia, A., Lenort, R., Holman, D., Staš, D., Krutilova, V., Wicher, P., Cagáňová, D., Špirková, D., Golej, J., Nguyen, K., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2016; pp. 455–467. [Google Scholar]
- Hussien, W.A.; Memon, F.A.; Savic, D.A. An integrated model to evaluate water-energy-food nexus at a household scale. Environ. Model. Softw. 2017, 93, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Jabaloyes, L.; Arregui, F.J.; Cobacho, R. Water End Use Disaggregation Based on Soft Computing Techniques. Water 2018, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Murakawa, S.; Takata, H.; Nishina, D. Development of the Calculating Method for the Loads of Water Consumption in Restaurant. In Proceedings of the 30th W062 International Symposium on Water Supply and Drainage for Buildings, Paris, France, 16–17 September 2004; p. 14. [Google Scholar]
- Murakawa, S.; Nishina, D.; Takata, H.; Tanaka, A. An Analysis on the Loads of Hot Water Consumption in the Restaurants. In Proceedings of the 31st W062 International Symposium on Water Supply and Drainage for Buildings, Brussels, Belgium, 14–16 September 2005; p. 11. [Google Scholar]
- Delagah, A.; Davis, R.; Slater, M.; Karas, A. Results from 20 Field Monitoring Projects on Rack and Flight Conveyor Dishwashers in Commercial Kitchens. ASHRAE Trans. 2007, 123. Available online: https://go.gale.com/ps/anonymous?id=GALE%7CA490983843&sid=googleScholar&v=2.1&it=r&linkaccess=fulltext&issn=00012505&p=AONE&sw=w (accessed on 1 March 2021).
- Deng, S. Energy and water uses and their performance explanatory indicators in hotels in Hong Kong. Energy Build. 2003, 35, 775–784. [Google Scholar] [CrossRef]
- Alonso, A.D. How Australian Hospitality Operations View Water Consumption and Water Conservation: An Exploratory Study. J. Hosp. Leis. Mark. 2008, 17. [Google Scholar] [CrossRef]
- Angulo, A.; Atwi, M.; Barberán, R.; Mur, J. Economic Analysis of the Water Demand in the Hotels and Restaurants Sector: Shadow Prices and Elasticities. Water Resour. Res. 2014, 50, 6577–6591. [Google Scholar] [CrossRef]
- Gabarda-Mallorquí, A.; Garcia, X.; Ribas, A. Mass tourism and water efficiency in the hotel industry: A case study. Int. J. Hosp. Manag. 2017, 61, 82–93. [Google Scholar] [CrossRef]
- Pereira, L.; Aguiar, V.; Vasconcelos, F. Future Industrial Kitchen: Challenges and Opportunities. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’19, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 163–164. [Google Scholar] [CrossRef]
- Vasconcelos, F.; Aguiar, V.; Pereira, L. Ultrasonic waste monitoring in the future industrial kitchen: Poster abstract. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, SenSys ’19, New York, NY, USA, 10–13 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 446–447. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. Water 2021, 13, 36. [Google Scholar] [CrossRef]
- Hedrick, R.; Smith, V.; Field, K. Restaurant Energy Use Benchmarking Guideline; Technical Report NREL/SR-5500-50547, 1019165; NREL: Golden, CO, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Mudie, S. Energy Benchmarking in UK Commercial Kitchens. Build. Serv. Eng. Res. Technol. 2016, 37, 205–219. [Google Scholar] [CrossRef]
- Zaher, R.; Chaccour, K.; Badr, G. Intelligent Software Simulation of Water Consumption in Domestic Homes. In Proceedings of the 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 6–8 April 2016; pp. 99–104. [Google Scholar] [CrossRef]
- Ritchie, M.J.; Engelbrecht, J.A.A.; Booysen, M.J. A Probabilistic Hot Water Usage Model and Simulator for Use in Residential Energy Management. Energy Build. 2021, 235, 110727. [Google Scholar] [CrossRef]
- Blokker, E.J.M.; Pieterse-Quirijns, E.J.; Vreeburg, J.H.G.; van Dijk, J.C. Simulating Nonresidential Water Demand with a Stochastic End-Use Model. J. Water Resour. Plan. Manag. 2011, 137, 511–520. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Accuracy | ≤1% |
Velocity Range | 0 ~±10 m/s, bi-directional |
Pipe Size | DN32 DN6000 mm |
Pipe Material | Steel, stainless steel, cast iron, copper, PVC, aluminum, etc. |
Type of Liquid | Single liquid that can transmit ultrasound, such as water, sea water, and oil |
Temperature | ~30 °C ~160 °C |
ID | Service | Area (m2) | Capacity (Seats) | Start | End | S |
---|---|---|---|---|---|---|
1 | Dinner | 58.15 | 50 | 15-02-2019 | 03-03-2019 | 5 |
2 | Dinner | 25.52 | 50 | 12-03-2019 | 02-04-2019 | 5 |
3 | Breakf. and Dinner | 35.23 | 40 | 16-04-2019 | 15-05-2019 | 5 |
Column | Description | Units |
---|---|---|
timestamp | The timestamp when the record was collected | – |
flow_rate | Water flow rate | m/h |
velocity | Water velocity | m/s |
sound_speed | Sound speed in the water | m/s |
flow_today | Total water flow from 00:00 up to this moment | m |
flow_month | Total water flow from the beginning of the month up to this moment | m |
Column | Description | Units |
---|---|---|
timestamp | The timestamp when the label was recorded | – |
mode | If the appliance is ON (0) or OFF (1) |
Column | Description | Units |
---|---|---|
ID | Kitchen identifier | |
service | Type of service provided (Breakfast, Lunch, Dinner) | |
area | Area of the kitchen floor | m |
capacity | Maximum number of customers in simultaneous | |
has_hot_water | If hot water data are available or not | |
has_cold_water | If cold water data are available or not | |
has_labels | If the data contain wet appliance labels or not | |
start | Date of the first measurement across all the waste bins | |
end | Date of the last measurement across all the waste bins |
ID | Days | Hot Water | Cold Water | Coverage (%) |
---|---|---|---|---|
1 | 18 | 289,541 | 289,851 | 98 |
2 | 25 | 396,936 | 393,678 | 95 |
3 | >31 | >– | >522,107 | >98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, L.; Aguiar, V.; Vasconcelos, F. FIKWater: A Water Consumption Dataset from Three Restaurant Kitchens in Portugal. Data 2021, 6, 26. https://doi.org/10.3390/data6030026
Pereira L, Aguiar V, Vasconcelos F. FIKWater: A Water Consumption Dataset from Three Restaurant Kitchens in Portugal. Data. 2021; 6(3):26. https://doi.org/10.3390/data6030026
Chicago/Turabian StylePereira, Lucas, Vitor Aguiar, and Fábio Vasconcelos. 2021. "FIKWater: A Water Consumption Dataset from Three Restaurant Kitchens in Portugal" Data 6, no. 3: 26. https://doi.org/10.3390/data6030026
APA StylePereira, L., Aguiar, V., & Vasconcelos, F. (2021). FIKWater: A Water Consumption Dataset from Three Restaurant Kitchens in Portugal. Data, 6(3), 26. https://doi.org/10.3390/data6030026