Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Experimental Design and Plant Samples Collection
3.2. Total Nitrogen Determination
3.3. Minerals and Organic Acid Determination
3.4. Statistic
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Formisano, L.; Pannico, A.; El-Nakhel, C.; Starace, G.; Poledica, M.; De Pascale, S.; Rouphael, Y. Improved porosity of insect proof screens enhances quality aspects of zucchini squash without compromising the yield. Plants 2020, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Department of Economic and Social Affairs of United Nations. World Population Prospects 2019: Highlights; Pubblications, U.N., Ed.; United Nations: New York, USA, 2019; ISBN 9789211483161. [Google Scholar]
- FAO. How to Feed the World in 2050. In Proceedings of the Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009. [Google Scholar]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, B.J.; Montero, J.I.; Pérez Parra, J.; Robertson, A.P.; Baeza, E.; Kamaruddin, R. Airflow Resistance of Greenhouse Ventilators with and without Insect Screens. Biosyst. Eng. 2003, 86, 217–229. [Google Scholar] [CrossRef]
- Lacasa, A.; Contreras, J. Comportamiento de Frankliniella occidentalis en la transmision del virus del bronceado del tomate: Planteamientos para su control en cultivos hortícolas. Phytoma España 1993, 50, 33–39. [Google Scholar]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of pesticides on environment. In Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Hakeem, K., Akhtar, M., Abdullah, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 253–269. ISBN 9783319274553. [Google Scholar]
- Formisano, L.; El-Nakhel, C.; Corrado, G.; De Pascale, S.; Rouphael, Y. Biochemical, physiological, and productive response of greenhouse vegetables to suboptimal growth environment induced by insect nets. Biology (Basel) 2020, 9, 432. [Google Scholar] [CrossRef]
- Von Zabeltitz, C. Integrated Greenhouse Systems for Mild Climates, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-14581-0. [Google Scholar]
- Alvarez, A.J. Estudio de las Características Geométricas y del Comportamiento Aerodinámico de las Mallas Antiinsectos Utilizadas en los Invernaderos como Medida de Protección Vegetal. Ph.D. Thesis, University of Almería, Almería, Spain, 2010. [Google Scholar]
- Castellano, S.; Scarascia Mugnozza, G.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic Nets in Agriculture: A General Review of Types and Applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Teitel, M.; Shklyar, A. Pressure Drop Across Insect-Proof Screens. Trans. ASAE 1998, 41, 1829–1834. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Peñaranda, A.; Payan, M.C.; Garrido, D.; Gómez, P.; Jamilena, M. Production of fruits with attached flowers in zucchini squash is correlated with the arrest of maturation of female flowers. J. Hortic. Sci. Biotechnol. 2007, 82, 579–584. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Pathak, J.; Ahmed, H.; Kumari, N.; Pandey, A.; Sinha, R.P. Role of Calcium and Potassium in Amelioration of Environmental Stress in Plants. Prot. Chem. Agents Amelior. Plant Abiotic Stress 2020, 535–562. [Google Scholar] [CrossRef]
- Comlekcioglu, N.; Soylu, M.K. Determination of high temperature tolerance via screening of flower and fruit formation in tomato. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg. 2010, 20, 123–130. [Google Scholar]
- Rivero, R.M.; Ruiz, J.M.; Garcı, P.C.; Lo, L.R.; Sa, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Albornoz, F.; Heinrich Lieth, J. Over fertilization limits lettuce productivity because of osmotic stress. Chil. J. Agric. Res. 2015, 75, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, H.; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 171–190. ISBN 9789811090448. [Google Scholar]
- FreshPlaza. Available online: https://www.freshplaza.it/article/9202994/presente-e-futuro-dello-zucchino-in-italia/ (accessed on 26 April 2021).
- ISTAT, Italian National Institute of Statistics. Available online: http://dati.istat.it/Index.aspx?QueryId=33703 (accessed on 26 April 2021).
- Priecina, L.; Karklina, D. Composition of Major Organic Acids in Vegetables and Spices. In Proceedings of the CBU International Conference Proceedings, Prague, Czech Republic, 25–27 March 2015; Volume 3, pp. 447–454. [Google Scholar]
- Rouphael, Y.; Colla, G.; Battistelli, A.; Moscatello, S.; Proietti, S.; Rea, E. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. J. Hortic. Sci. Biotechnol. 2004, 79, 423–430. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. (Amst.) 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis. Part 2. CHemical and microbiological properties. Agronomy Monograph 9; Black, C.A., Evans, D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. (Amst.) 2017, 226, 353–360. [Google Scholar] [CrossRef]
Treatments | Total N | NO3 | K | PO4 | SO4 | Ca | Mg | Cl | Na | Malate | Citrate |
---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | |
No-net | 22.40 ± 0.39 a | 0.12 ± 0.01 | 31.68 ± 1.12 | 2.82 ± 0.43 b | 4.49 ± 0.30 a | 17.50 ± 0.67 a | 4.84 ± 0.32 a | 15.53 ± 0.53 a | 0.27 ± 0.03 c | 21.30 ± 0.99 b | 12.31 ± 1.03 a |
50 mesh AP | 17.45 ± 0.52 c | 0.21 ± 0.04 | 29.71 ± 1.71 | 9.72 ± 0.51 a | 1.74 ± 0.14 b | 14.96 ± 0.53 b | 5.12 ± 0.09 a | 4.33 ± 0.19 b | 1.84 ± 0.08 a | 31.70 ± 1.21 a | 9.12 ± 0.32 b |
50 mesh | 19.93 ± 0.91 b | 0.23 ± 0.04 | 27.07 ± 0.65 | 9.66 ± 0.76 a | 2.62 ± 0.31 b | 10.47 ± 0.50 c | 4.11 ± 0.05 b | 2.91 ± 0.28 c | 1.20 ± 0.04 b | 24.41 ± 1.45 b | 8.18 ± 0.85 b |
Significance | ** | ns | ns | *** | *** | *** | * | *** | *** | ** | * |
Treatments | Total N | NO3 | K | PO4 | SO4 | Ca | Mg | Cl | Na | Malate | Citrate |
---|---|---|---|---|---|---|---|---|---|---|---|
(g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | |
No-net | 36.04 ± 0.94 b | 0.20 ± 0.16 | 44.12 ± 0.14 | 18.79 ± 0.70 | 2.51 ± 0.29 | 4.54 ± 0.14 a | 4.14 ± 0.28 | 8.69 ± 0.74 a | 2.87 ± 0.16 | 25.52 ± 1.22 a | 2.43 ± 0.32 |
50 mesh AP | 35.65 ± 1.08 b | 0.19 ± 0.12 | 41.63 ± 0.91 | 18.32 ± 1.12 | 2.40 ± 0.12 | 2.94 ± 0.21 b | 4.34 ± 0.14 | 6.43 ± 0.27 b | 3.18 ± 0.17 | 21.21 ± 0.16 b | 3.19 ± 0.18 |
50 mesh | 39.71 ± 0.61 a | 0.21 ± 0.05 | 41.36 ± 1.39 | 18.62 ± 2.08 | 2.84 ± 0.46 | 2.07 ± 0.04 c | 3.61 ± 0.20 | 5.75 ± 0.10 b | 2.81 ± 0.20 | 15.37 ± 1.19 c | 2.23 ± 0.34 |
Significance | * | ns | ns | ns | ns | *** | ns | ** | ns | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, L.; Ciriello, M.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves. Data 2021, 6, 50. https://doi.org/10.3390/data6050050
Formisano L, Ciriello M, El-Nakhel C, De Pascale S, Rouphael Y. Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves. Data. 2021; 6(5):50. https://doi.org/10.3390/data6050050
Chicago/Turabian StyleFormisano, Luigi, Michele Ciriello, Christophe El-Nakhel, Stefania De Pascale, and Youssef Rouphael. 2021. "Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves" Data 6, no. 5: 50. https://doi.org/10.3390/data6050050
APA StyleFormisano, L., Ciriello, M., El-Nakhel, C., De Pascale, S., & Rouphael, Y. (2021). Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves. Data, 6(5), 50. https://doi.org/10.3390/data6050050