Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases
Abstract
:1. Summary
2. Data Description
Disease/Disorder | Organism | Tissue Type | Sample Type | # of Studies | # of Samples | GEO Identifier | EdgeR, Camera, DRIMseq | Salmon | SPIA |
---|---|---|---|---|---|---|---|---|---|
Acute Lymphoblastic Leukemia (ALL) | Homo sapiens | Blood and bone marrow | Total RNA | 1 | 10 | GSE162894 [22] | Yes | Yes | Yes |
B-cell Lymphomas | Homo sapiens | B-cells | mRNA | 7 | 322 | GSE153437 [23] GSE130751 [24] GSE110219 [25] GSE95013 [26] GSE62241 [27] GSE50514 [28] GSE45982 [29] | Yes | Yes | Yes |
Borrelia burgdorferi | Homo sapiens | PBMC | mRNA | 1 | 97 | GSE63085 [30] | Yes | Yes | No |
Chronic Obstructive Pulmonary Disease (COPD) | Homo sapiens | Lung tissue | mRNA | 1 | 189 | GSE57148 [31] | Yes | No | No |
Colorectal cancer | Homo sapiens | Colorectal tissue | lncRNA | 3 | 44 | GSE104836 [32] GSE124526 [33] GSE155457 [34] | Yes | Partial | Yes |
Hantavirus | Homo sapiens | PBMC, HUVEC | Total RNA | 2 | 36 | GSE133751 [35] GSE158712 [36] | Yes | No | Yes |
Influenza A | Homo sapiens | A549 | mRNA | 1 | 4 | GSE147507 [37] | Yes | No | Yes |
Lupus Erythematosus | Homo sapiens | B-cells | mRNA | 3 | 335 | GSE92387 [38] GSE118254 [39] GSE110999 [40] | Yes | Yes | Yes |
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) | Homo sapiens | Calu-3 | mRNA | 3 | 31 | GSE139516 [41] GSE122876 [42] GSE56192 1 | Yes | Partial | Yes |
Streptococcus pneumoniae | Homo sapiens, Mus Musculus | Nasal samples, nasal lavage, polymorphonuclear leukocytes, A549 | Total RNA, mRNA | 5 | 104 | GSE150811 1 GSE79595 [43] GSE116604 [44] GSE117580 [45] GSE124949 [46] | Yes | Yes | Yes |
Respiratory syncytial virus (RSV) | Homo sapiens | A549 | mRNA | 1 | 4 | GSE147507 [37] | Yes | No | Yes |
Severe acute respiratory syndrome coronavirus (SARS-CoV) | Homo sapiens | MRC5 | Total RNA | 1 | 15 | GSE56192 1 | Yes | No | Yes |
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) | Homo sapiens | A549, NHBE, Calu-3, RUES2-derived lung cells, M1 + M2 macrophages | mRNA, scRNA | 4 | 38 | GSE147507 [37] GSE149312 [47] GSE150708 [48] GSE153970 [49] | Yes | Yes | Yes |
3. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, T.; Huo, Z.; Kuo, A.; Zhu, L.; Fang, Z.; Zeng, X.; Lin, C.-W.; Liu, S.; Wang, L.; Liu, P.; et al. MetaOmics: Analysis Pipeline and Browser-Based Software Suite for Transcriptomic Meta-Analysis. Bioinformatics 2019, 35, 1597–1599. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Q.; Zheng, C.-H.; Zhao, X.-M. JNMFMA: A Joint Non-Negative Matrix Factorization Meta-Analysis of Transcriptomics Data. Bioinformatics 2015, 31, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Garg, G.; Gasser, R.B.; Ranganathan, S. TranSeqAnnotator: Large-Scale Analysis of Transcriptomic Data. BMC Bioinform. 2012, 13 (Suppl. 17), S24. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Liu, Z. A Benchmark for RNA-Seq Deconvolution Analysis under Dynamic Testing Environments. Genome Biol. 2021, 22, 102. [Google Scholar] [CrossRef]
- Medina, I.; Carbonell, J.; Pulido, L.; Madeira, S.C.; Goetz, S.; Conesa, A.; Tárraga, J.; Pascual-Montano, A.; Nogales-Cadenas, R.; Santoyo, J.; et al. Babelomics: An Integrative Platform for the Analysis of Transcriptomics, Proteomics and Genomic Data with Advanced Functional Profiling. Nucleic Acids Res. 2010, 38, W210–W213. [Google Scholar] [CrossRef]
- Matikas, A.; Zerdes, I.; Lövrot, J.; Richard, F.; Sotiriou, C.; Bergh, J.; Valachis, A.; Foukakis, T. Prognostic Implications of PD-L1 Expression in Breast Cancer: Systematic Review and Meta-Analysis of Immunohistochemistry and Pooled Analysis of Transcriptomic Data. Clin. Cancer Res. 2019, 25, 5717–5726. [Google Scholar] [CrossRef]
- Haas Bueno, R.; Recamonde-Mendoza, M. Meta-Analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol. Diagn. Ther. 2020, 24, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Aevermann, B.D.; Pickett, B.E.; Kumar, S.; Klem, E.B.; Agnihothram, S.; Askovich, P.S.; Bankhead, A.; Bolles, M.; Carter, V.; Chang, J.; et al. A Comprehensive Collection of Systems Biology Data Characterizing the Host Response to Viral Infection. Sci. Data 2014, 1, 140033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kori, M.; Yalcin Arga, K. Potential Biomarkers and Therapeutic Targets in Cervical Cancer: Insights from the Meta-Analysis of Transcriptomics Data within Network Biomedicine Perspective. PLoS ONE 2018, 13, e0200717. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Dobson, R.J.B.; Newhouse, S.J. A Meta-Analysis of Alzheimer’s Disease Brain Transcriptomic Data. J. Alzheimers Dis. 2019, 68, 1635–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.-L.; Zhang, Z.-N.; Wu, X.; Jiang, Y.-J.; Fu, Y.-J.; Shang, H. Transcriptomic Meta-Analysis Identifies Gene Expression Characteristics in Various Samples of HIV-Infected Patients with Nonprogressive Disease. J. Transl. Med. 2017, 15, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.F.; Field, D.; Sansone, S.-A.; Aerts, J.; Apweiler, R.; Ashburner, M.; Ball, C.A.; Binz, P.-A.; Bogue, M.; Booth, T.; et al. Promoting Coherent Minimum Reporting Guidelines for Biological and Biomedical Investigations: The MIBBI Project. Nat. Biotechnol. 2008, 26, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolson, G.L.; Settineri, R.; Ellithorpe, R. Glycophospholipid Formulation with NADH and CoQ10 Significantly Reduces Intractable Fatigue in Western Blot-Positive ‘Chronic Lyme Disease’ Patients: Preliminary Report. Funct. Foods Health Dis. 2012, 2, 35–47. [Google Scholar] [CrossRef]
- Czirjak, L.; Varju, C. Clinical Features of Scleroderma-Like Disorders: A Challenge for the Rheumatologist. Curr. Rheumatol. Rev. 2006, 2, 369–379. [Google Scholar] [CrossRef]
- Finsterer, J.; Löscher, W.N.; Wanschitz, J.; Iglseder, S. Orphan Peripheral Neuropathies. J. Neuromuscul. Dis. 2021, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- González-Sanz, R.; Mata, M.; Bermejo-Martín, J.; Álvarez, A.; Cortijo, J.; Melero, J.A.; Martínez, I. ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation. J. Virol. 2016, 90, 3428–3438. [Google Scholar] [CrossRef] [Green Version]
- Drori, Y.; Jacob-Hirsch, J.; Pando, R.; Glatman-Freedman, A.; Friedman, N.; Mendelson, E.; Mandelboim, M. Influenza A Virus Inhibits RSV Infection via a Two-Wave Expression of IFIT Proteins. Viruses 2020, 12, 1171. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, D.; Roswit, W.T.; Jin, X.; Patel, A.C.; Patel, D.A.; Agapov, E.; Wang, Z.; Tidwell, R.M.; Atkinson, J.J.; et al. PARP9-DTX3L Ubiquitin Ligase Targets Host Histone H2BJ and Viral 3C Protease to Enhance Interferon Signaling and Control Viral Infection. Nat. Immunol. 2015, 16, 1215–1227. [Google Scholar] [CrossRef]
- Ruiduo, C.; Ying, D.; Qiwei, W. CXCL9 Promotes the Progression of Diffuse Large B-Cell Lymphoma through up-Regulating β-Catenin. Biomed. Pharmacother. 2018, 107, 689–695. [Google Scholar] [CrossRef]
- Shah, N.; Cabanillas, F.; McIntyre, B.; Feng, L.; McLaughlin, P.; Rodriguez, M.A.; Romaguera, J.; Younes, A.; Hagemeister, F.B.; Kwak, L.; et al. Prognostic Value of Serum CD44, Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Patients with Indolent Non-Hodgkin Lymphomas. Leuk. Lymphoma 2012, 53, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Pullarkat, V.A.; Lacayo, N.J.; Jabbour, E.; Rubnitz, J.E.; Bajel, A.; Laetsch, T.W.; Leonard, J.; Colace, S.I.; Khaw, S.L.; Fleming, S.A.; et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov. 2021, 11, 1440–1453. [Google Scholar] [CrossRef]
- Faramand, R.; Jain, M.; Staedtke, V.; Kotani, H.; Bai, R.; Reid, K.; Lee, S.B.; Spitler, K.; Wang, X.; Cao, B.; et al. Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Clin. Cancer Res. 2020, 26, 4823–4831. [Google Scholar] [CrossRef]
- Li, M.; Chiang, Y.-L.; Lyssiotis, C.A.; Teater, M.R.; Hong, J.Y.; Shen, H.; Wang, L.; Hu, J.; Jing, H.; Chen, Z.; et al. Non-Oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell 2019, 35, 916–931.e9. [Google Scholar] [CrossRef] [PubMed]
- Porpaczy, E.; Tripolt, S.; Hoelbl-Kovacic, A.; Gisslinger, B.; Bago-Horvath, Z.; Casanova-Hevia, E.; Clappier, E.; Decker, T.; Fajmann, S.; Fux, D.A.; et al. Aggressive B-Cell Lymphomas in Patients with Myelofibrosis Receiving JAK1/2 Inhibitor Therapy. Blood 2018, 132, 694–706. [Google Scholar] [CrossRef]
- Teater, M.; Dominguez, P.M.; Redmond, D.; Chen, Z.; Ennishi, D.; Scott, D.W.; Cimmino, L.; Ghione, P.; Chaudhuri, J.; Gascoyne, R.D.; et al. AICDA Drives Epigenetic Heterogeneity and Accelerates Germinal Center-Derived Lymphomagenesis. Nat. Commun. 2018, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Raju, S.; Kretzmer, L.Z.; Koues, O.I.; Payton, J.E.; Oltz, E.M.; Cashen, A.; Polic, B.; Schreiber, R.D.; Shaw, A.S.; Markiewicz, M.A. NKG2D-NKG2D Ligand Interaction Inhibits the outgrowth of Naturally Arising Low-Grade B Cell Lymphoma In Vivo. J. Immunol. 2016, 196, 4805–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouhigharabaei, L.; Finalet Ferreiro, J.; Tousseyn, T.; van der Krogt, J.-A.; Put, N.; Haralambieva, E.; Graux, C.; Maes, B.; Vicente, C.; Vandenberghe, P.; et al. Non-IG Aberrations of FOXP1 in B-Cell Malignancies Lead to an Aberrant Expression of N-Truncated Isoforms of FOXP1. PLoS ONE 2014, 9, e85851. [Google Scholar] [CrossRef]
- Verma, A.; Jiang, Y.; Du, W.; Fairchild, L.; Melnick, A.; Elemento, O. Transcriptome Sequencing Reveals Thousands of Novel Long Non-Coding RNAs in B Cell Lymphoma. Genome Med. 2015, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouquet, J.; Soloski, M.J.; Swei, A.; Cheadle, C.; Federman, S.; Billaud, J.-N.; Rebman, A.W.; Kabre, B.; Halpert, R.; Boorgula, M.; et al. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease. MBio 2016, 7, e00100–e00116. [Google Scholar] [CrossRef] [Green Version]
- Jeong, I.; Lim, J.-H.; Oh, D.K.; Kim, W.J.; Oh, Y.-M. Gene Expression Profile of Human Lung in a Relatively Early Stage of COPD with Emphysema. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2643–2655. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, L.-M.; Li, S.-L.; Li, J.; Gao, B.; Wang, F.-F.; Wang, S.-P.; Hu, X.-H.; Cao, J.; Wang, G.-Y. Differentially Expressed LncRNAs and MRNAs Identified by NGS Analysis in Colorectal Cancer Patients. Cancer Med. 2018, 7, 4650–4664. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Li, S.; Kong, F.; Ruan, H.; Xu, X.; Zhang, X.; Wu, Z.; Zhang, L.; Xu, Y.; Yuan, H.; et al. Long Noncoding RNA PiHL Regulates P53 Protein Stability through GRWD1/RPL11/MDM2 Axis in Colorectal Cancer. Theranostics 2020, 10, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Lazar, S.B.; Pongor, L.; Li, X.L.; Grammatikakis, I.; Muys, B.R.; Dangelmaier, E.A.; Redon, C.E.; Jang, S.-M.; Walker, R.L.; Tang, W.; et al. Genome-Wide Analysis of the FOXA1 Transcriptional Network Identifies Novel Protein-Coding and Long Noncoding RNA Targets in Colorectal Cancer Cells. Mol. Cell. Biol. 2020, 40. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhu, N.; Guo, W.; Wang, X.; Li, K.; Yan, J.; Jiang, C.; Han, S.; Xiang, H.; Wu, X.; et al. RNA-Seq Revealed a Circular RNA-MicroRNA-MRNA Regulatory Network in Hantaan Virus Infection. Front. Cell. Infect. Microbiol. 2020, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Quan, C.; Xing, W.; Wang, P.; Gao, J.; Zhang, Z.; Jiang, X.; Ma, C.; Carr, M.J.; He, Q.; et al. Rapid Humoral Immune Responses Are Required for Recovery from Haemorrhagic Fever with Renal Syndrome Patients. Emerg. Microbes Infect. 2020, 9, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Jenks, S.A.; Cashman, K.S.; Zumaquero, E.; Marigorta, U.M.; Patel, A.V.; Wang, X.; Tomar, D.; Woodruff, M.C.; Simon, Z.; Bugrovsky, R.; et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018, 49, 725–739.e6. [Google Scholar] [CrossRef] [Green Version]
- Scharer, C.D.; Blalock, E.L.; Mi, T.; Barwick, B.G.; Jenks, S.A.; Deguchi, T.; Cashman, K.S.; Neary, B.E.; Patterson, D.G.; Hicks, S.L.; et al. Epigenetic Programming Underpins B Cell Dysfunction in Human SLE. Nat. Immunol. 2019, 20, 1071–1082. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Kumar, V.; Karnell, J.L.; Naiman, B.; Gross, P.S.; Rahman, S.; Zerrouki, K.; Hanna, R.; Morehouse, C.; et al. IL-21 Drives Expansion and Plasma Cell Differentiation of Autoreactive CD11chiT-Bet+ B Cells in SLE. Nat. Commun. 2018, 9, 1758. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, H.; Wen, L.; Shuai, H.; Yang, D.; Wang, Y.; Hou, Y.; Zhu, Z.; Yuan, S.; Yin, F.; et al. Competing Endogenous RNA Network Profiling Reveals Novel Host Dependency Factors Required for MERS-CoV Propagation. Emerg. Microbes Infect. 2020, 9, 733–746. [Google Scholar] [CrossRef]
- Yuan, S.; Chu, H.; Chan, J.F.-W.; Ye, Z.-W.; Wen, L.; Yan, B.; Lai, P.-M.; Tee, K.-M.; Huang, J.; Chen, D.; et al. SREBP-Dependent Lipidomic Reprogramming as a Broad-Spectrum Antiviral Target. Nat. Commun. 2019, 10, 120. [Google Scholar] [CrossRef]
- Aprianto, R.; Slager, J.; Holsappel, S.; Veening, J.-W. Time-Resolved Dual RNA-Seq Reveals Extensive Rewiring of Lung Epithelial and Pneumococcal Transcriptomes during Early Infection. Genome Biol. 2016, 17, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuipers, K.; Lokken, K.L.; Zangari, T.; Boyer, M.A.; Shin, S.; Weiser, J.N. Age-Related Differences in IL-1 Signaling and Capsule Serotype Affect Persistence of Streptococcus Pneumoniae Colonization. PLoS Pathog. 2018, 14, e1007396. [Google Scholar] [CrossRef]
- Jochems, S.P.; Marcon, F.; Carniel, B.F.; Holloway, M.; Mitsi, E.; Smith, E.; Gritzfeld, J.F.; Solórzano, C.; Reiné, J.; Pojar, S.; et al. Inflammation Induced by Influenza Virus Impairs Human Innate Immune Control of Pneumococcus. Nat. Immunol. 2018, 19, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Weight, C.M.; Venturini, C.; Pojar, S.; Jochems, S.P.; Reiné, J.; Nikolaou, E.; Solórzano, C.; Noursadeghi, M.; Brown, J.S.; Ferreira, D.M.; et al. Microinvasion by Streptococcus Pneumoniae Induces Epithelial Innate Immunity during Colonisation at the Human Mucosal Surface. Nat. Commun. 2019, 10, 3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, M.M.; Beumer, J.; van der Vaart, J.; Knoops, K.; Puschhof, J.; Breugem, T.I.; Ravelli, R.B.G.; Paul van Schayck, J.; Mykytyn, A.Z.; Duimel, H.Q.; et al. SARS-CoV-2 Productively Infects Human Gut Enterocytes. Science 2020, 369, 50–54. [Google Scholar] [CrossRef]
- Duan, F.; Guo, L.; Yang, L.; Han, Y.; Thakur, A.; Nilsson-Payant, B.E.; Wang, P.; Zhang, Z.; Ma, C.Y.; Zhou, X.; et al. Modeling COVID-19 with Human Pluripotent Stem Cell-Derived Cells Reveals Synergistic Effects of Anti-Inflammatory Macrophages with ACE2 Inhibition Against SARS-CoV-2. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Vanderheiden, A.; Ralfs, P.; Chirkova, T.; Upadhyay, A.A.; Zimmerman, M.G.; Bedoya, S.; Aoued, H.; Tharp, G.M.; Pellegrini, K.L.; Manfredi, C.; et al. Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [PubMed]
- Orjuela, S.; Huang, R.; Hembach, K.M.; Robinson, M.D.; Soneson, C. ARMOR: An Automated Reproducible MOdular Workflow for Preprocessing and Differential Analysis of RNA-Seq Data. G3 Genes Genomes Genet. 2019, 9, 2089–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köster, J.; Rahmann, S. Snakemake—A Scalable Bioinformatics Workflow Engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babraham Bioinformatics—Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 7 June 2021).
- Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 7 June 2021).
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Smyth, G.K. Camera: A Competitive Gene Set Test Accounting for Inter-Gene Correlation. Nucleic Acids Res. 2012, 40, e133. [Google Scholar] [CrossRef]
- Nowicka, M.; Robinson, M.D. DRIMSeq: A Dirichlet-Multinomial Framework for Multivariate Count Outcomes in Genomics. F1000Research 2016, 5, 1356. [Google Scholar] [CrossRef] [PubMed]
- Tarca, A.L.; Draghici, S.; Khatri, P.; Hassan, S.S.; Mittal, P.; Kim, J.-S.; Kim, C.J.; Kusanovic, J.P.; Romero, R. A Novel Signaling Pathway Impact Analysis. Bioinformatics 2009, 25, 75–82. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapier-Sharman, N.; Krapohl, J.; Beausoleil, E.J.; Gifford, K.T.L.; Hinatsu, B.R.; Hoffmann, C.S.; Komer, M.; Scott, T.M.; Pickett, B.E. Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases. Data 2021, 6, 75. https://doi.org/10.3390/data6070075
Rapier-Sharman N, Krapohl J, Beausoleil EJ, Gifford KTL, Hinatsu BR, Hoffmann CS, Komer M, Scott TM, Pickett BE. Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases. Data. 2021; 6(7):75. https://doi.org/10.3390/data6070075
Chicago/Turabian StyleRapier-Sharman, Naomi, John Krapohl, Ethan J. Beausoleil, Kennedy T. L. Gifford, Benjamin R. Hinatsu, Curtis S. Hoffmann, Makayla Komer, Tiana M. Scott, and Brett E. Pickett. 2021. "Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases" Data 6, no. 7: 75. https://doi.org/10.3390/data6070075
APA StyleRapier-Sharman, N., Krapohl, J., Beausoleil, E. J., Gifford, K. T. L., Hinatsu, B. R., Hoffmann, C. S., Komer, M., Scott, T. M., & Pickett, B. E. (2021). Preprocessing of Public RNA-Sequencing Datasets to Facilitate Downstream Analyses of Human Diseases. Data, 6(7), 75. https://doi.org/10.3390/data6070075