RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor
Abstract
:1. Introduction
1.1. Related Work
1.2. Research Contribution
2. Dataset Description
2.1. Rice Field Sidewalk Dataset
2.2. Tractor Location and Orientation Dataset
2.3. Foldering Structure
- ○
- RIFIS
- ●
- Images
- ■
- dataset
- ■
- annotations.json
- ●
- LocationOrientation
- ■
- Location-orientation.xlsx
- ●
- Videos
- ■
- FrontCamera
- ■
- LeftCamera
- ■
- RightCamera
3. Dataset Acquisition Methods
3.1. Location and Source of Collection
3.2. Camera and Recording Support
3.3. GPS, MPU, and Compass
4. Dataset Evaluation
4.1. Mask R-CNN
4.2. Dataset Evaluation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeon, C.-W.; Kim, H.-J.; Yun, C.; Gang, M.; Han, X. An entry-exit path planner for an autonomous tractor in a paddy field. Comput. Electron. Agric. 2021, 191, 106548. [Google Scholar] [CrossRef]
- Rondelli, V.; Franceschetti, B.; Mengoli, D. A Review of Current and Historical Research Contributions to the Development of Ground Autonomous Vehicles for Agriculture. Sustainability 2022, 14, 9221. [Google Scholar] [CrossRef]
- Cutulle, M.A.; Maja, J.M. Determining the Utility of an Unmanned Ground Vehicle for Weed Control in Specialty Crop Systems. Ital. J. Agron. 2021, 16, 1865. [Google Scholar] [CrossRef]
- Singh, D.; Ichiura, S.; Katahira, M. Growth Information Acquisition by Unmanned Ground Vehicle and Artificial Intelligence in Rice. In Proceedings of the ASABE 2020 Annual International Meeting, Vitural, 13–15 July 2020; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2020. [Google Scholar]
- Quaglia, G.; Visconte, C.; Scimmi, L.S.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Design of the Positioning Mechanism of an Unmanned Ground Vehicle for Precision Agriculture. In Mechanisms and Machine Science; Springer Science and Business Media B.V.: Norwell, MA, USA, 2019; Volume 73, pp. 3531–3540. [Google Scholar]
- Wang, L.; Lan, Y.; Zhang, Y.; Zhang, H.; Tahir, M.N.; Ou, S.; Liu, X.; Chen, P. Applications and Prospects of Agricultural Unmanned Aerial Vehicle Obstacle Avoidance Technology in China. Sensors 2019, 19, 642. [Google Scholar] [CrossRef]
- De Simone, M.C.; Rivera, Z.B.; Guida, D. Obstacle Avoidance System for Unmanned Ground Vehicles by Using Ultrasonic Sensors. Machines 2018, 6, 18. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Long, L.; Lu, Z.; Shi, J. Efficient and Adaptive Lidar–Visual–Inertial Odometry for Agricultural Unmanned Ground Vehicle. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221094925. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of Unmanned Systems for Agricultural Applications: A Theoretical Framework. Biosyst. Eng. 2021. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperative Agricultural Operations of Aerial and Ground Unmanned Vehicles. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2020, Trento, Italy, 4–6 November 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 224–229. [Google Scholar]
- Zoto, J.; Musci, M.A.; Khaliq, A.; Chiaberge, M.; Aicardi, I. Automatic Path Planning for Unmanned Ground Vehicle Using UAV Imagery. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 980, pp. 223–230. [Google Scholar]
- Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Yang, C.-Y.; Lai, M.-H.; Wu, D.-H. A UAV Open Dataset of Rice Paddies for Deep Learning Practice. Remote Sens. 2021, 13, 1358. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ospina, R.; Noguchi, N.; Okamoto, H.; Ngo, Q.H. Real-Time Disease Detection in Rice Fields in the Vietnamese Mekong Delta. Environ. Control. Biol. 2021, 59, 77–85. [Google Scholar] [CrossRef]
- Kiratiratanapruk, K.; Temniranrat, P.; Kitvimonrat, A.; Sinthupinyo, W.; Patarapuwadol, S. Using Deep Learning Techniques to Detect Rice Diseases from Images of Rice Fields. In Trends in Artificial Intelligence Theory and Applications Artificial Intelligence Practices; Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12144, pp. 225–237. [Google Scholar]
- Yakkundimath, R.; Saunshi, G.; Anami, B.; Palaiah, S. Classification of Rice Diseases Using Convolutional Neural Network Models. J. Inst. Eng. Ser. B 2022, 103, 1047–1059. [Google Scholar] [CrossRef]
- Lee, S.K.; Yoon, S.Y.; Won, J.S. Vegetation Height Estimate in Rice Fields Using Single Polarization TanDEM-X Science Phase Data. Remote Sens. 2018, 10, 1702. [Google Scholar] [CrossRef]
- Qadri, S.; Aslam, T.; Nawaz, S.A.; Saher, N.; Razzaq, A.; Rehman, M.U.; Ahmad, N.; Shahzad, F.; Qadri, S.F. Machine Vision Approach for Classification of Rice Varieties Using Texture Features. Int. J. Food Prop. 2021, 24, 1615–1630. [Google Scholar] [CrossRef]
- Ramadhani, F.; Pullanagari, R.; Kereszturi, G.; Procter, J. Automatic Mapping of Rice Growth Stages Using the Integration of Sentinel-2, Mod13q1, and Sentinel-1. Remote Sens. 2020, 12, 3613. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.-T.; Wang, J.-H.; Chang, Y.-L. Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote Sens. 2020, 13, 103. [Google Scholar] [CrossRef]
- Dadashzadeh, M.; Abbaspour-Gilandeh, Y.; Mesri-Gundoshmian, T.; Sabzi, S.; Hernández-Hernández, J.L.; Hernández-Hernández, M.; Arribas, J.I. Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields. Plants 2020, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Blok, P.M.; Kootstra, G.; Elghor, H.E.; Diallo, B.; van Evert, F.K.; van Henten, E.J. Active Learning with MaskAL Reduces Annotation Effort for Training Mask R-CNN on a Broccoli Dataset with Visually Similar Classes. Comput. Electron. Agric. 2022, 197, 106917. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit Detection for Strawberry Harvesting Robot in Non-Structural Environment Based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Wang, S.; Sun, G.; Zheng, B.; Du, Y. A Crop Image Segmentation and Extraction Algorithm Based on Mask RCNN. Entropy 2021, 23, 1160. [Google Scholar] [CrossRef]
- Warden, P.; Situnayake, D. TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Wang, H.; Lyu, S.; Ren, Y. Paddy Rice Imagery Dataset for Panicle Segmentation. Agronomy 2021, 11, 1542. [Google Scholar] [CrossRef]
- Shao, H.; Tang, R.; Lei, Y.; Mu, J.; Guan, Y.; Xiang, Y. Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset. Plants 2021, 10, 1625. [Google Scholar] [CrossRef]
- Jobbágy, J.; Bartík, O.; Krištof, K.; Bárek, V.; Virágh, R.; Slaný, V. Design of Hardware and Software Equipment for Monitoring Selected Operating Parameters of the Irrigator. Sensors 2022, 22, 3549. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.R.; Park, J.W.; Lee, J.H.; Jung, H.J.; Sarwar, M.Z. Instant Bridge Visual Inspection Using an Unmanned Aerial Vehicle by Image Capturing and Geo-Tagging System and Deep Convolutional Neural Network. Struct. Health Monit. 2021, 20, 1760–1777. [Google Scholar] [CrossRef]
- Chiao, J.-Y.; Chen, K.-Y.; Liao, K.Y.-K.; Hsieh, P.-H.; Zhang, G.; Huang, T.-C. Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine 2019, 98, e15200. [Google Scholar] [CrossRef] [PubMed]
- Podder, S.; Bhattacharjee, S.; Roy, A. An Efficient Method of Detection of COVID-19 Using Mask R-CNN on Chest X-ray Images. AIMS Biophys. 2021, 8, 281–290. [Google Scholar] [CrossRef]
Title | Targeted Domain | Annotation Type | Number of Data | Place |
---|---|---|---|---|
Paddy Rice Imagery Dataset for Panicle Segmentation (2021) [25] | Panicle detection and segmentation tasks | Polygon | 400 images | Hokkaido University, Sapporo, Japan |
A UAV Open Dataset of Rice Paddies for Deep Learning Practice (2021) [12] | Rice seedling detection | Bounding boxes | Rice seedling—28,047 images, Arable land—26,581 images | Wufeng District, Taichung, Taiwan |
Rice Ear Counting Based on Image Segmentation and Establishment of a Dataset (2021) [26] | Rice ear detection | Polygon | 3300 images (originally 1100 images before augmentation) | Sichuan Agricultural University, Ya’an City, Sichuan Province, China |
Classification of Rice Diseases using Convolutional Neural Network Models (2022) [15] | Rice disease detection | Bounding boxes | 12,000 images (originally 1200 images before augmentation) | University of Agricultural Sciences (UAS), Dharwad, India |
Real-Time Disease Detection in Rice Fields in the Vietnamese Mekong Delta (2020) [13] | Rice disease detection | Bounding boxes | 116 images | Vietnamese Mekong Delta |
Using Deep Learning Techniques to Detect Rice Diseases from Images of Rice Fields (2020) [14] | Rice disease detection | Polygon | 6300 images | Thailand |
Proposed Rice Field Sidewalk (RIFIS) (2022) | Rice field sidewalk | Bounding boxes and Polygon | 3723 images and 18 videos | Denpasar, Bali, Indonesia |
Day Condition | Weather Condition | Rice Field State | Environmental Condition | Occlusion | Presence of Object |
---|---|---|---|---|---|
1. Afternoon; | 2. Partially Cloudy; | 3. Partially Covered by Grass; 4. Watery; 5. Partially Ploughed; | 6. Mild to Strong Glare; 7. Variation in Rice Field Surface Color; 8. Not Smooth Color Transition Between Sidewalk and Rice Field Area; | 9. Partial Occlusion by Grass; 10. Partial Occlusion by Humans; 11. Partial Occlusion by Tractor Wheel; 12. Partial Occlusion by Small Irrigation Channel; | 13. Grass; 14. Irrigation Channel; 15. Humans; 16. Small Huts; 17. Houses; 18. Sky (Clouds); 19. Trees. |
Images [ ] | Annotations [ ] | ||
---|---|---|---|
id | integer | id | integer |
width | integer | iscrowd | Boolean |
height | integer | image_id | integer |
file_name | string | category_id | integer |
segmentation | float [ ] | ||
bbox | float [ ] | ||
area | float |
Device | Data Variable | Example Value | Unit |
---|---|---|---|
ESP32 TTGO T-Call | Date-Time | 2021-12-21 10:18:06 | yyyy-mm-dd hh:mm:ss |
Gyroscope | Yaw | −36.219238 | deg/s |
Pitch | 2.912616 | deg/s | |
Roll | −13.965352 | deg/s | |
Accelerometer | X | −39 | m/s2 |
Y | −87 | m/s2 | |
Z | 266 | m/s2 | |
Magnetometer | Azimuth | 284 | deg |
GPS | Longitude | −8.632576 | deg |
Latitude | 115.144852 | deg |
Nature of Location | Location Name | Geographical Coordinates |
---|---|---|
Rice Field 1 | Uma Desa Canggu | −8.632394°; 115.144956° |
Rice Field 2 | Uma Desa Canggu | −8.632368°; 115.144836° |
Symbol | Definition | Symbol | Definition |
---|---|---|---|
the index of an anchor | ground truth label | ||
loss function | predicted four parameterized | ||
classification loss | coordinates of the bounding box | ||
bounding box regression loss | mini-batch size | ||
mask prediction loss | number of anchor locations | ||
predicted probability of anchor i as RIFIS |
Name | Number of Steps | Time | Train Loss | Validation Loss |
---|---|---|---|---|
Epoch 1 | 500 | 847 s | 0.8881 | 0.3588 |
Epoch 2 | 500 | 453 s | 0.4238 | 0.3005 |
Epoch 3 | 500 | 455 s | 0.3400 | 0.3516 |
Epoch 4 | 500 | 454 s | 0.2948 | 0.3902 |
Epoch 5 | 500 | 455 s | 0.2510 | 0.2757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisnapati, P.N.; Maneetham, D. RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor. Data 2022, 7, 135. https://doi.org/10.3390/data7100135
Crisnapati PN, Maneetham D. RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor. Data. 2022; 7(10):135. https://doi.org/10.3390/data7100135
Chicago/Turabian StyleCrisnapati, Padma Nyoman, and Dechrit Maneetham. 2022. "RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor" Data 7, no. 10: 135. https://doi.org/10.3390/data7100135
APA StyleCrisnapati, P. N., & Maneetham, D. (2022). RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor. Data, 7(10), 135. https://doi.org/10.3390/data7100135