Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions
Abstract
:1. Summary
Importance of the Dataset
- This dataset contains solubilities of gypsum and anhydrite under a broad range of conditions. The dataset can be used to tackle the calcium sulfate scaling potential for a variety of complex aqueous industrial streams.
- The dataset provides comprehensive insights about anhydrite dissolution and gypsum precipitation.
- The dataset is of interest for engineers and researchers in various disciplines such as chemistry, geochemistry, environmental and chemical engineering, geotechnical and civil engineering, etc.
- The data can be used to develop mathematical and machine learning models to determine calcium sulfate solubility in aquatic systems.
2. Literature Review
3. Data Description
4. Methods
5. User Notes
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Ethics Statements
References
- Cameron, F.K.; Bell, J.M. The system lime, gypsum, water at 25°. J. Am. Chem. Soc. 1906, 28, 1220–1222. [Google Scholar] [CrossRef] [Green Version]
- Partridge, E.P.; White, A.H. The solubility of calcium sulfate from 0 to 200. J. Am. Chem. Soc. 1929, 51, 360–370. [Google Scholar] [CrossRef]
- Campbell, A.N.; Yanick, N.S. The system NiSO4—CaSO4—H2O. Trans. Faraday Soc. 1932, 28, 657–661. [Google Scholar] [CrossRef]
- Straub, F.G. Solubility of calcium sulfate and calcium carbonate at temperatures between 1820c and 3160c. Ind. Eng. Chem. 1932, 24, 914–917. [Google Scholar] [CrossRef]
- Hill, A.E. The transition temperature of gypsum to anhydrite. J. Am. Chem. Soc. 1937, 59, 2242–2244. [Google Scholar] [CrossRef]
- Hill, A.E.; Wills, J.H. Ternary systems. XXIV. Calcium sulfate, sodium sulfate and water. J. Am. Chem. Soc. 1938, 60, 1647–1655. [Google Scholar] [CrossRef]
- Booth, H.S.; Bidwell, R.M. Solubilities of salts in water at high temperatures. J. Am. Chem. Soc. 1950, 72, 2567–2575. [Google Scholar] [CrossRef]
- Madgin, W.M.; Swales, D.A. Solubilities in the system CaSO4-NaCl-H2O at 25° and 35°. J. Appl. Chem. 1956, 6, 482–487. [Google Scholar] [CrossRef]
- Bock, E. On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 C, 30 C, 40 C, and 50 C. Can. J. Chem. 1961, 39, 1746–1751. [Google Scholar] [CrossRef]
- Dickson, F.W.; Blount, C.W.; Tunell, G. Use of hydrothermal solution equipment to determine the solubility of anhydrite in water from 100 degrees C to 275 degrees C and from 1 bar to 1000 bars pressure. Am. J. Sci. 1963, 261, 61–78. [Google Scholar] [CrossRef]
- Marshall, W.L.; Slusher, R.; Jones, E.V. Aqueous systems at high temperatures XIV. Solubility and thermodynamic relationships for CaSO4 in NaCl-H2O solutions from 40° to 200 °C., 0 to 4 Molal NaCl. J. Chem. Eng. Data 1964, 9, 187–191. [Google Scholar] [CrossRef]
- Marshall, W.L.; Slusher, R. Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0-110 1, 2. J. Phys. Chem. 1966, 70, 4015–4027. [Google Scholar] [CrossRef]
- Ostroff, A.G.; Metler, A.V. Solubility of calcium sulfate dihydrate in the system NaCl-MgCl2-H2O from 28° to 70 °C. J. Chem. Eng. Data 1966, 11, 346–350. [Google Scholar] [CrossRef]
- Power, W.H.; Fabuss, B.M.; Satterfield, C.N. Transient solubilities and phase changes of calcium sulfate in aqueous sodium chloride. J. Chem. Eng. Data 1966, 11, 149–154. [Google Scholar] [CrossRef]
- Furby, E.; Glueckauf, E.; McDonald, L.A. The solubility of calcium sulphate in sodium chloride and sea salt solutions. Desalination 1968, 4, 264–276. [Google Scholar] [CrossRef]
- Templeton, C.C.; Rodgers, J.C. Solubility of anhydrite in several aqueous salt solutions between 250. degree. and 325. degree. J. Chem. Eng. Data 1967, 12, 536–547. [Google Scholar] [CrossRef]
- Blounot, C.W.; Dickson, F.W. The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450 C and 1 to 1000 bars. Geochim. Et Cosmochim. Acta 1969, 33, 227–245. [Google Scholar] [CrossRef]
- Block, J.; Waters, O.B. Calcium sulfate-sodium sulfate-sodium chloride-water system at 25. deg. to 100. deg. J. Chem. Eng. Data 1968, 13, 336–344. [Google Scholar] [CrossRef]
- Tanji, K.K. Solubility of gypsum in aqueous electrolytes as affected by ion association and ionic strengths up to 0.15 M and at 25. deg. Environ. Sci. Technol. 1969, 3, 656–661. [Google Scholar] [CrossRef]
- Nakayama, F.S. Calcium complexing and the enhanced solubility of gypsum in concentrated sodium-salt solutions. Soil Sci. Soc. Am. J. 1971, 35, 881–883. [Google Scholar] [CrossRef]
- Yeatts, L.B.; Marshall, W.L. Solubility of calcium sulfate dihydrate and association equilibriums in several aqueous mixed electrolyte salt systems at 25. deg. J. Chem. Eng. Data 1972, 17, 163–168. [Google Scholar] [CrossRef]
- Kalyanaraman, R.; Yeatts, L.B.; Marshall, W.L. Solubility of calcium sulfate and association equilibria in CaSO4+ Na2SO4+ NaClO4+ H2O at 273 to 623 K. J. Chem. Thermodyn. 1973, 5, 899–909. [Google Scholar] [CrossRef]
- Kalyanaraman, R.; Yeatts, L.B.; Marshall, W.L. High-temperature Debye-Huckel correlated solubilities of calcium sulfate in aqueous sodium perchlorate solutions. J. Chem. Thermodyn. 1973, 5, 891–898. [Google Scholar] [CrossRef]
- Blount, C.W.; Dickson, F.W. Gypsum-anhydrite equilibria in systems CaSO4-H2O and CaCO4-NaCl-H2O. Am. Mineral. J. Earth Planet. Mater. 1973, 58, 323–331. [Google Scholar]
- Marshall, W.L.; Slusher, R. The ionization constant of nitric acid at high temperatures from solubilities of calcium sulfate in HNO3- H2O, 100–350° C; activity coefficients and thermodynamic functions. J. Inorg. Nucl. Chem. 1975, 37, 1191–1202. [Google Scholar] [CrossRef]
- Innorta, G.; Rabbi, E.; Tomadin, L. The gypsum-anhydrite equilibrium by solubility measurements. Geochim. Cosmochim. Acta 1980, 44, 1931–1936. [Google Scholar] [CrossRef]
- Barba, D.; Brandani, V.; Di Giacomo, G. Solubility of calcium sulfate dihydrate in the system Na2SO4-MgCl2-H2O. J. Chem. Eng. Data 1984, 29, 42–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Muhammed, M. Solubility of calcium sulfate dihydrate in nitric acid solutions containing calcium nitrate and phosphoric acid. J. Chem. Eng. Data 1989, 34, 121–124. [Google Scholar] [CrossRef]
- Calmanovici, C.E.; Gabas, N.; Laguerie, C. Solubility measurements for calcium sulfate dihydrate in acid solutions at 20, 50, and 70. degree. C. J. Chem. Eng. Data 1993, 38, 534–536. [Google Scholar] [CrossRef]
- Ling, Y.; Demopoulos, G.P. Solubility of Calcium Sulfate Hydrates in (0 to 3.5) mol kg−1 Sulfuric Acid Solutions at 100 °C. J. Chem. Eng. Data 2004, 49, 1263–1268. [Google Scholar] [CrossRef]
- Kumar, A.; Mohandas, V.P.; Susarla VR, K.S.; Ghosh, P.K. Ionic interactions of calcium sulfate dihydrate in aqueous calcium chloride solutions: Solubilities, densities, viscosities, and electrical conductivities at 30 °C. J. Solut. Chem. 2004, 33, 995–1003. [Google Scholar] [CrossRef]
- Kumar, A.; Mohandas, V.P.; Sanghavi, R.; Ghosh, P.K. Ionic interactions of calcium sulfate dihydrate in aqueous sodium chloride solutions: Solubilities, densities, viscosities, electrical conductivities, and surface tensions at 35 °C. J. Solut. Chem. 2005, 34, 333–342. [Google Scholar] [CrossRef]
- Li, Z.; Demopoulos, G.P. Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3 on solubility of CaSO4 phases in aqueous HCl or HCl+ CaCl2 solutions at 298 to 353 K. J. Chem. Eng. Data 2006, 51, 569–576. [Google Scholar] [CrossRef]
- Kumar, A.; Sanghavi, R.; Mohandas, V.P. Solubility pattern of CaSO4 2H2O in the system NaCl+ CaCl2+ H2O and solution densities at 35 °C: Non-ideality and ion pairing. J. Chem. Eng. Data 2007, 52, 902–905. [Google Scholar] [CrossRef]
- Farrah, H.E.; Lawrance, G.A.; Wanless, E.J. Solubility of calcium sulfate salts in acidic manganese sulfate solutions from 30 to 105 C. Hydrometallurgy 2007, 86, 13–21. [Google Scholar] [CrossRef]
- Azimi, G.; Papangelakis, V.G. Thermodynamic modeling and experimental measurement of calcium sulfate in complex aqueous solutions. Fluid Phase Equilibria 2010, 290, 88–94. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, J.; Li, Z. Measurement and modelling of solubility for calcium sulfate dihydrate and calcium hydroxide in NaOH/KOH solutions. Fluid Phase Equilibria 2010, 297, 129–137. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Guan, B.; Wu, Z. Solubility of calcium sulfate dihydrate in ca−mg−K chloride salt solution in the range of (348.15 to 371.15) K. J. Chem. Eng. Data 2010, 55, 2100–2107. [Google Scholar] [CrossRef]
- Tian, P.; Ning, P.; Cao, H.; Li, Z. Determination and modeling of solubility for CaSO42H2O–NH4+–Cl−–SO42−–NO3−–H2O system. J. Chem. Eng. Data 2012, 57, 3664–3671. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, D.; Chen, Q.; Yin, X. Experimental determination and modeling of gypsum and insoluble anhydrite solubility in the system CaSO4–H2SO4–H2O. Chem. Eng. Sci. 2013, 101, 120–129. [Google Scholar] [CrossRef]
- Shukla, J.; Mehta, M.J.; Kumar, A. Effect of ionic liquid additives on the solubility behavior and morphology of calcium sulfate dihydrate (gypsum) in the aqueous sodium chloride system and physicochemical solution properties at 30 C. J. Chem. Eng. Data 2018, 63, 2743–2752. [Google Scholar] [CrossRef]
- Scheuermann, P.P.; Tutolo, B.M.; Seyfried Jr, W.E. Anhydrite solubility in low-density hydrothermal fluids: Experimental measurements and thermodynamic calculations. Chem. Geol. 2019, 524, 184–195. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Meng, T.; Amar, M.N.; Sun, Y.; Sadighi, A.; Butscher, C. Modeling solubility of anhydrite and gypsum in aqueous solutions: Implications for swelling of clay-sulfate rocks. Rock Mech. Rock Eng. 2022, 55, 4391–4402. [Google Scholar] [CrossRef]
- Kleinert, T.; Wurm, P. Löslichkeitsuntersuchungen im wäßrigen System H2SO4-Na2SO4-CaSO4. Mon. Chem. Und Verwandte Teile And. Wiss. 1952, 83, 459–462. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, J.; Dangar, Y.; Mohandas, V.P. Efect of MgCl2 on the solubility of CaSO4·2H2O in the aqueous NaCl system and physicochemical solution properties at 35 °C. J Chem Eng Data 2010, 55, 1675–1678. [Google Scholar] [CrossRef]
Dataset | Solutions | T | Calcium Sulfate (s) | Time | Source |
---|---|---|---|---|---|
DS-1 | Ca(OH)2 | 25 °C | DH | two weeks | Cameron and Bell (1906) [1] |
DS-2 | Water | 98.6–198.4 °C | AH | 1.5–24 h | Partridge and White (1929) [2] |
DS-3 | NiSO4 | 45, 75, 90 °C | DH | 24 h | Campbell and Yanick (1932) [3] |
DS-4 | Water | 182–316 °C | DH | 90 h | Straub (1932) [4] |
DS-5 | K2SO4 | 35, 45, 65 °C | AH | 4 months | Hill(1937) [5] |
DS-6 | Na2SO4 | 25, 35, 50, 70 °C | DH | 12 h | Hill and Wills (1938) [6] |
DS-7 | Water | 0–408 °C | AH | 20 h | Booth and Bidwell (1950) [7] |
DS-8 | NaCl, Na2SO4 | 25, 35 °C | DH + AH | less than 60 h | Madgin and Swales (1956) [8] |
DS-9 | NaCl | 25, 30, 40, 50 °C | DH + AH | 96 h | Bock(1961) [9] |
DS-10 | Water | 100–275 °C | AH | 17–500 h | Dickson et al. (1963) [10] |
DS-11 | NaCl | 40–200 °C | DH + AH | 1 h–5 days | Marshall et al. (1964) [11] |
DS-12 | NaCl | 0–110 °C | DH | 16–96 h | Marshall and Slusher (1966) [12] |
DS-13 | MgCl2, NaCl | 28–70 °C | DH | 9 days | Ostroff and Metler (1966) [13] |
DS-14 | NaCl | 25–105 °C | DH + AH | 0.5–246 h | Power and Fabuss (1966) [14] |
DS-15 | Sea salt, NaCl | 25, 75, 100 °C | DH + AH | — | Furby et al. (1968) [15] |
DS-16 | NaCl, CaCl2, Na2SO4, MgSO4, MgCl2, NaNO3, or their mixtures | 250, 275, 300, 325 °C | AH | — | Templeton and Rodgers (1967) [16] |
DS-17 | NaCl | 100–450 °C | AH | 24–1080 h | Blount and Dickson (1969) [17] |
DS-18 | NaCl, Na2SO4 | 25–100 °C | DH | at least 3 weeks | Block and Waters (1968) [18] |
DS-19 | NaCl, MgCl, CaCl2, Na2SO4, MgSO4, CaSO4, or their mixtures | 25 °C | DH | 24 h | Tanji (1969) [19] |
DS-20 | NaClO4, NaCl, NaNO3, NaOAc | 25 °C | DH | at least 1 week | Nakayama (1971) [20] |
DS-21 | Na2SO4, NaCl, Li2SO4, LiNO3, LiCl, NaNO3 | 25 °C | DH | 18–112 h | Yeatts and Marshall (1972) [21] |
DS-22 | Na2SO4, NaClO4 | 273–623 K | DH + AH | — | Kalyanaraman et al. (1973a) [22] |
DS-23 | NaClO4 | 298–523 K | DH + AH | — | Kalyanaraman et al. (1973b) [23] |
DS-24 | Water | 50–83 °C | DH + AH | — | Blount (1973) [24] |
DS-25 | HNO3 | 100–350 °C | DH + AH | 3–23 h | Marshall and Slusher (1975) [25] |
DS-26 | Water | 25–65 °C | DH + AH | one week | Innorta et al. (1980) [26] |
DS-27 | MgCl2, Na2SO4 | 40 °C | DH | 36 h | Barba et al. (1984) [27] |
DS-28 | H3PO4, HNO3, H2SO4, Ca(NO3)2 | 25 °C | DH | 3–4 weeks | Zhang and Muhammed (1989) [28] |
DS-29 | H3PO4, H2SO4 | 20, 50, 70 °C | DH | 12 h | Calmanovici et al. (1993) [29] |
DS-30 | H2SO4 | 100 °C | DH + AH | 2 h | Ling and Demopoulos (2004) [30] |
DS-31 | CaCl2 | 30 °C | DH | 24 h | Kumar et al. (2004) [31] |
DS-32 | NaCl | 35 °C | DH | 24 h | Kumar et al. (2005) [32] |
DS-33 | NaCl, MgCl2, AlCl3, FeCl2, FeCl3, AlCl3, HCl | 298.1–353 K | DH + AH | 1–5 h | Li and Demopoulos (2006) [33] |
DS-34 | CaCl2+NaCl | 35 °C | DH | Kumar et al. (2007) [34] | |
DS-35 | Mn2+, H2SO4 | 30–105 °C | DH + AH | 4–36 days | Farrah et al. (2007) [35] |
DS-36 | NiSO4, H2SO4, MgSO4, Fe2(SO4)3, LiCl and HCl | 25–90 °C | DH + AH | 24 h | Azimi and Papangelakis (2010) [36] |
DS-37 | NaOH, KOH | 25–75 °C | DH | 6.5 h | Yuan et al. (2010) [37] |
DS-38 | CaCl2, MgCl2, KCl | 348.15–371.15 K | DH | 6 h | Wu et al. (2010) [38] |
DS-39 | NH4Cl, NH4NO3, mixed NH4Cl and (NH4)2SO4 | 298.15–343.15 K | DH | 24 h | Tian et al. (2012) [39] |
DS-40 | H2SO4 | 298.1–363.1 K | DH + AH | 128 h | Wang et al. (2013) [40] |
DS-41 | NaCl+ethylammonium lactate (EAL)/1-ethyl-3-methyl imidazolium hydrogen sulfate ([C2mim]HSO4)/1-butyl-3-methy limidazolium hydrogen sulfate ([C4mim]HSO4) | 30 °C | DH | — | Shukla et al. (2018) [41] |
DS-42 | NaCl | 410, 450 °C | AH | — | Scheuermann et al. (2019) [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherdangkoo, R.; Tian, M.; Sadighi, A.; Meng, T.; Yang, H.; Butscher, C. Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions. Data 2022, 7, 140. https://doi.org/10.3390/data7100140
Taherdangkoo R, Tian M, Sadighi A, Meng T, Yang H, Butscher C. Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions. Data. 2022; 7(10):140. https://doi.org/10.3390/data7100140
Chicago/Turabian StyleTaherdangkoo, Reza, Miaomiao Tian, Ali Sadighi, Tao Meng, Huichen Yang, and Christoph Butscher. 2022. "Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions" Data 7, no. 10: 140. https://doi.org/10.3390/data7100140
APA StyleTaherdangkoo, R., Tian, M., Sadighi, A., Meng, T., Yang, H., & Butscher, C. (2022). Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions. Data, 7(10), 140. https://doi.org/10.3390/data7100140