Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling
Abstract
:1. Summary
2. Data Description
- Sample name: identifying name of the sample, as reported in the certificate.
- Long_UTM: longitude in WGS 84/UTM zone 32 N coordinates (EPSG:32632).
- Lat_UTM: latitude in WGS 84/UTM zone 32 N coordinates (EPSG:32632).
- Precision [-]: accuracy of georeferencing information about the site of measurements or soil sampling (1: exact location, positioning error of a few meters; 2: approximate location known, positioning error of a few hundred meters, 3: roughly approximate location: positioning error of a few kilometres).
- Municipality/Locality: municipality or locality of the site of measurements or soil sampling.
- Province: administrative province of the site of measurements or soil sampling.
- Date: date of in situ measurements or soil sampling.
- Soil type: soil classification according to AGI (Associazione Geotecnica Italiana-Italian Geotechnics Association) recommendations [23] based on particle-size distribution.
- Gravel [%]: soil fraction of particles larger than 2 mm in diameter from wet sieving analysis [23].
- Sand [%]: soil fraction of particles ranging from 2 mm to 0.06 mm in diameter from wet sieving and decantation analyses [23].
- Silt [%]: soil fraction of particles ranging from 0.06 mm to 0.002 mm in diameter from decantation analysis [23].
- Clay [%]: soil fraction of particles smaller than 0.002 mm in diameter from decantation analysis [23].
- BST depth [m]: depth in meters below ground level at which the BST test (Borehole Shear Test by means of tester Model No. 104 by Handy Geotechnical Instruments, [24]) was carried out to measure geotechnical cohesion and internal friction angle values.
- Φ’ situ (BST) [°]: effective internal friction angle from BST test [24].
- c [kPa]: cohesion from BST test [24].
- c’ [kPa]: effective cohesion from BST test [24] or direct shear test.
- Φ’ lab [°]: effective internal friction angle obtained by direct shear test.
- Φ’b [°]: friction angle increment due to soil matrix suction from BST [24] and tensiometer.
- Φr [°]: residual internal friction angle from ring shear test.
- Ksat [m/s]: saturated hydraulic conductivity, from in situ measures by means of a constant head permeameter Amoozmeter [25].
- S [hPa]: matrix suction measured in situ by means of tensiometer.
- TDR [%]: surface soil moisture measured in situ by means of Time-Domain-Reflectometry [26].
- USCS: soil classification according to the Unified Soil Classification System based on the main grain size class and the Casagrande plasticity chart.
- AASHTO: soil classification according to American Association of State Highway and Transportation Officials based on grain size distribution and soil plasticity features.
- A [-]: activity index; it expresses the degree of activity of clayey minerals (inactive soil: A < 0.75, normally active soil: 0.75 < A < 1.25, active soil: A > 1.25).
- WP [%]: plastic limit of Atterberg limits from hand rolling method [28]; it expresses the minimum water content causing the transition from solid behaviour to plastic behaviour of soils.
- IP [%]: plasticity index [28]; it defines the range of values of water content within which a soil has a plastic behaviour, as IP increases the mechanical properties of the material decay.
- IC [-]: consistency index [28], expressing the consistency of the soil; soil strength increases with Ic while compressibility decreases (for IC = 0 then W = WL, for IC = 1 then W = WP).
- IL [-]: liquidity index [28], expressing the consistency of the soil (for IL = 1 then W = WL, for IL = 0 then W = WP).
- W [%]: soil water content of the undisturbed soil sample obtained drying at 110 °C for 24 h.
- γ [kN/m3]: unit weight; weight per unit volume (soil sampling using hollow punch).
- γd [kN/m3]: dry unit weight; weight per unit volume of the dry sample (obtained drying hollow punch sample for 24 h at 110 °C).
- γsat [kN/m3]: saturated unit weight; weight per unit volume of the saturated sample (hollow punch sample).
- n [%]: porosity of the sample (obtained considering measured dry unit weight and assuming a relative density of 2.65 for the solid fraction).
- Formation: name of the geological formation in which the sample (or the measure) was taken.
- Lithology: lithological class to which the geological formation (see previous point) belongs.
- Altitude [m a.s.l.]: elevation in meters above sea level at which the sample/measure was taken.
- Notes: any other useful information about measurement methods, location, and any issues encountered during sampling.
- Land use: land use/land cover class of sampling site or in situ measurements.
3. Methods
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Montgomery, D.R. Shalstab: A Digital Terrain Model for Mapping Shallow Landslide Potential; Technical Report; NCASI (National Council of the Paper Industry for Air and Stream Improvement): Cary, NC, USA, 1998; p. 26. [Google Scholar]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geol. Surv. Open-File Rep. 2002, 424, 38. [Google Scholar]
- Simoni, S.; Zanotti, F.; Bertoldi, G.; Rigon, R. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol. Process. 2008, 22, 532–545. [Google Scholar] [CrossRef]
- Arnone, E.; Noto, L.V.; Lepore, C.; Bras, R.L. Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale. Geomorphology 2011, 133, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Salciarini, D.; Fanelli, G.; Tamagnini, C. A probabilistic model for rainfall-induced shallow landslide prediction at the regional scale. Landslides 2017, 14, 1731–1746. [Google Scholar] [CrossRef]
- Rossi, G.; Catani, F.; Leoni, L.; Segoni, S.; Tofani, V. HIRESSS: A physically based slope stability simulator for HPC applications. Nat. Hazards Earth Syst. Sci. 2013, 13, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Bulzinetti, M.A.; Segoni, S.; Pappafico, G.; Masi, E.B.; Rossi, G.; Tofani, V. A Tool for the Automatic Aggregation and Validation of the Results of Physically Based Distributed Slope Stability Models. Water 2021, 13, 2313. [Google Scholar] [CrossRef]
- Reid, M.E.; Christian, S.B.; Brien, D.L.; Henderson, S.T. Scoops3D-Software to Analyze Three-Dimensional Slope Stability throughout a Digital Landscape Chapter 1 of Section A, Modeling Methods Book 14, Landslide and Debris-Flow Assessment; U.S. Geological Survey: Menlo Park, CA, USA, 2015.
- Crosta, G.B.; Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Palazzolo, N.; Peres, D.J.; Bordoni, M.; Meisina, C.; Creaco, E.; Cancelliere, A. Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrepò Pavese. Water 2021, 13, 801. [Google Scholar] [CrossRef]
- Kuriakose, S.L.; van Beek, L.P.H.; van Westen, C.J. Parameterizing a physically based shallow landslide model in a data poor region. Earth Surf. Process. Landforms 2009, 34, 867–881. [Google Scholar] [CrossRef]
- Mergili, M.; Marchesini, I.; Rossi, M.; Guzzetti, F.; Fellin, W. Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 2014, 206, 178–195. [Google Scholar] [CrossRef]
- Bicocchi, G.; Tofani, V.; D’Ambrosio, M.; Tacconi-Stefanelli, C.; Vannocci, P.; Casagli, N.; Lavorini, G.; Trevisani, M.; Catani, F. Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling. Bull. Eng. Geol. Environ. 2019, 78, 4875–4891. [Google Scholar] [CrossRef] [Green Version]
- Baroni, G.; Facchi, A.; Gandolfi, C.; Ortuani, B.; Horeschi, D.; van Dam, J.C. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity. Hydrol. Earth Syst. Sci. 2010, 14, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Fusco, F.; Mirus, B.B.; Baum, R.L.; Calcaterra, D.; Vita, P. De Incorporating the Effects of Complex Soil Layering and Thickness Local Variability into Distributed Landslide Susceptibility Assessments. Water 2021, 13, 713. [Google Scholar] [CrossRef]
- De Lima Neves Seefelder, C.; Koide, S.; Mergili, M. Does parameterization influence the performance of slope stability model results? A case study in Rio de Janeiro, Brazil. Landslides 2017, 14, 1389–1401. [Google Scholar] [CrossRef] [Green Version]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow landslides modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, G.; Salciarini, D.; Tamagnini, C. Reliable Soil Property Maps over Large Areas: A Case Study in Central Italy. Environ. Eng. Geosci. 2016, 22, 37–52. [Google Scholar] [CrossRef]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Tacconi Stefanelli, C.; Masi, E.B.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Leoni, L.; Benedetti, A.I.; Catani, F.; Righini, G.; Falorni, G.; Gabellani, S.; Rudari, R.; Silvestro, F.; Rebora, N. Towards a definition of a real-time forecasting network for rainfall induced shallow landslides. Nat. Hazards Earth Syst. Sci. 2009, 9, 2119–2133. [Google Scholar] [CrossRef] [Green Version]
- Mercogliano, P.; Segoni, S.; Rossi, G.; Sikorsky, B.; Tofani, V.; Schiano, P.; Catani, F.; Casagli, N. Brief communication; A prototype forecasting chain for rainfall induced shallow landslides. Nat. Hazards Earth Syst. Sci. 2013, 13, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Italiana, A.G. Nomenclatura geotecnica e classifica delle terre. Geotecnica 1963, 4, 275–286. [Google Scholar]
- Lutenegger, A.; Hallberg, G. Borehole Shear Test in Geotechnical Investigations. Lab. Shear Strength Soil ASTM Int. 1981, 566–578. [Google Scholar] [CrossRef]
- Amoozegar, A. A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci. Soc. Am. J. 1989, 53, 1356–1361. [Google Scholar] [CrossRef]
- Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A method of measuring soil moisture by time-domain reflectometry. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- Casagrande, A. Notes on the design of the liquid limit device. Geotechnique 1958, 8, 84–91. [Google Scholar] [CrossRef]
- ASTM D4318-10; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2010.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannocci, P.; Segoni, S.; Masi, E.B.; Cardi, F.; Nocentini, N.; Rosi, A.; Bicocchi, G.; D’Ambrosio, M.; Nocentini, M.; Lombardi, L.; et al. Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling. Data 2022, 7, 37. https://doi.org/10.3390/data7030037
Vannocci P, Segoni S, Masi EB, Cardi F, Nocentini N, Rosi A, Bicocchi G, D’Ambrosio M, Nocentini M, Lombardi L, et al. Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling. Data. 2022; 7(3):37. https://doi.org/10.3390/data7030037
Chicago/Turabian StyleVannocci, Pietro, Samuele Segoni, Elena Benedetta Masi, Francesco Cardi, Nicola Nocentini, Ascanio Rosi, Gabriele Bicocchi, Michele D’Ambrosio, Massimiliano Nocentini, Luca Lombardi, and et al. 2022. "Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling" Data 7, no. 3: 37. https://doi.org/10.3390/data7030037
APA StyleVannocci, P., Segoni, S., Masi, E. B., Cardi, F., Nocentini, N., Rosi, A., Bicocchi, G., D’Ambrosio, M., Nocentini, M., Lombardi, L., Tofani, V., Casagli, N., & Catani, F. (2022). Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling. Data, 7(3), 37. https://doi.org/10.3390/data7030037