Tropical Wood Species Recognition: A Dataset of Macroscopic Images
Abstract
:1. Summary
2. Data Description
Parameters of the Data Collection
- Image Resolution: 640 × 480 pixels, based on the CMOS sensor size;
- Magnification: 3.9 µm/pixel (microns per pixel);
- Area of interest: 2.5 mm × 1.9 mm;
- Lighting: artificial provided by the capturing device.
3. Methods
3.1. Place of Collection
3.2. Sample Preparation
3.3. Image Adquisition and Labeling
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cristiano, P.M.; Campanello, P.I.; Bucci, S.J.; Rodriguez, S.A.; Lezcano, O.A.; Scholz, F.G.; Goldstein, G. Evapotranspiration of subtropical forests and tree plantations: A comparative analysis at different temporal and spatial scales. Agric. For. Meteorol. 2015, 203, 96–106. [Google Scholar] [CrossRef]
- World Wild Life, Forest. 2019. Available online: https://www.worldwildlife.org/initiatives/forests (accessed on 10 February 2022).
- Koch, G.; Haag, V.; Heinz, I.; Richter, H.-G.; Schmitt, U. Control of internationally traded timber-the role of macroscopic and microscopic wood identification against illegal logging. J. Forensic. Res. 2015, 6, 2–4. [Google Scholar] [CrossRef]
- WWF-Colombia-Programa Subregional Amazonas Norte & Chocó Darién; Maderas de Colombia. 2013; pp. 3–8. ISBN 978-958-8353-53-1. Available online: www.wwf.org.co/?213040/Maderas-de-Colombia (accessed on 10 June 2022).
- López Camacho, R.; Pulido Rodríguez, E.N.; González Martínez, R.O.; Nieto Vargas, J.E.; Vásquez, M.Y. Especies comercializadas en el Territorio, Guía para su identificación, Corporación Autónoma Regional de Cundinamarca-CAR; Editorial Universidad Distrital Francisco José de Caldas: Bogota, Colombia, 2014; pp. 15–17. ISBN 978-958-8897-1-10. [Google Scholar]
- MinAmbiente, CARDER, WWF, FedeMaderas. Pacto Intersectorial por la Madera legal en Colombia. 2009. Available online: https://www.ica.gov.co/areas/agricola/servicios/pacto-interseccional-de-madera/pactomadera/pacto_intersectorial_maderalegal.aspx (accessed on 20 February 2022).
- MinAmbiente, ONF Andina. Uso y Legalidad de la Madera en Colombia-Análisis Parcial; 2015; pp. 154–196; ISBN: 978-958-8901-09-1. Available online: https://www.minambiente.gov.co/wp-content/uploads/2021/10/Uso-y-Legalidad-de-la-Madera.pdf (accessed on 10 June 2022).
- Ravindran, P.; Costa, A.; Soares, R.; Wiedenhoeft, A.C. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods 2018, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, P.; Thompson, B.J.; Soares, R.K.; Wiedenhoeft, A.C. The XyloTron: Flexible, Open-Source, Image-Based Macroscopic Field Identification of Wood Products. Front. Plant Sci. 2020, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Mata, G.; Mata-Montero, E.; Valverde-Otárola, J.C.; Arias-Aguilar, D.; Zamora-Villalobos, N. Using Deep Learning to Identify Costa Rican Native Tree Species From Wood Cut Images. Front. Plant Sci. 2022, 13, 789227. [Google Scholar] [CrossRef] [PubMed]
- Duarte, P.; Borges, C.; Ferreira, C.; Cruz, T.; de Souza, W.; Mori, F. Anatomical Identification of tropical woods traded in lavras, brazil. J. Trop. For. Sci. 2021, 33, 95–104. [Google Scholar] [CrossRef]
- Arévalo, R.E.; Pulido, E.N.; Solórzano, J.F.; Soares, R.; Ruffinatto, F.; Ravindran, P.; Wiedenhoeft, A.C. Imaged based identification of Colombian timbers using the xylotron: A proof of concept international partnership. Colomb. For. 2021, 24, 5–16. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C. The xylophone: Toward democratizing access to high-quality macroscopic imaging for wood and other substrates. IAWA J. 2020, 41, 699–719. [Google Scholar] [CrossRef]
- Tang, X.J.; Tay, Y.H.; Siam, N.A.; Lim, S.C. MyWood-ID: Automated Macroscopic Wood Identification System using Smartphone and macro-lens. In Proceedings of the 2018 International Conference on Computational Intelligence and Intelligent Systems, New York, NY, USA, 17–19 November 2018; pp. 37–43. [Google Scholar] [CrossRef]
- Tay, Y.H. XYLORIX: An AI-as-a-Service Platform for Wood Identification. In Proceedings of the IAWA-IUFRO International Symposium for Updating Wood Identification, Beijing, China, 20–22 May 2019. [Google Scholar] [CrossRef]
- Ravindran, P.; Owens, F.C.; Wade, A.C.; Vega, P.; Montenegro, R.; Shmulsky, R.; Wiedenhoeft, A.C. Field-Deployable Computer Vision Wood Identification of Peruvian Timbers. Front. Plant Sci. 2021, 12, 647515. [Google Scholar] [CrossRef] [PubMed]
- Wiedenhoeft, A.C. Identification of Central American Woods; Center for Wood Anatomy Research, USDA Forest Service: Madison, WI, USA, 2011; pp. 23–26. ISBN 978-1-892529-58-9.
- Wiedenhoeft, A.C.; Simeone, J.; Smith, A.; Parker-Forney, M.; Soares, R.; Fishman, A. Fraud and misrepresentation in retail forest products exceeds U.S. forensic wood science capacity. PLoS ONE 2019, 14, e0219917. [Google Scholar] [CrossRef]
- Figueroa, G.; Mata, E.; Valverde, J.C.; Arias, D. Using deep convolutional networks for species identification of xylotheque samples. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 18–20 July 2018; pp. 1–9. [Google Scholar] [CrossRef]
- De Geus, A.R.; Silva, S.F.D.; Gontijo, A.B.; Silva, F.O.; Batista, M.A.; Souza, J.R. An analysis of timber sections and deep learning for wood species classification. Multimed. Tools Appl. 2020, 79, 34513–34529. [Google Scholar] [CrossRef]
- InsideWood Working Group (IWG). Available online: https://insidewood.lib.ncsu.edu/ (accessed on 13 July 2022).
- International Tropical Timber Organization (ITTO). Available online: http://www.tropicaltimber.info/ and https://www.itto.int/ (accessed on 13 July 2022).
- Simpson, W.; Ten Wolde, A. Physical Properties and Moisture Relations of Wood. In Chapter 3 Wood Handbook—Wood as an Engineering Material; Report FPL–GTR-113; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999. [Google Scholar]
- Jones, P.D. Basic Guide to Identification of Hardwoods and Softwoods Using Anatomical Characteristics; FAO of the United Nations: Mississippi State University Extension Service: Jackson, MI, USA, 2010. [Google Scholar]
- Laboratório Visão Robótica e Imagem. Available online: https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic/ (accessed on 20 June 2022).
- Oliveira, L.S.; Nisgoski, S.; Britto, A.S. Forest species recognition using macroscopic images. Mach. Vis. Appl. 2014, 25, 1019–1031. [Google Scholar] [CrossRef]
Scientific Name/Folder Name | Family | Common Colombian Name/Global Trade Name | Wood Type | Number of Images |
---|---|---|---|---|
Campnosperma panamensis | Anacardiaceae | Sajo/Orey Wood | Hardwood | 823 |
Cedrela odorata | Meliaceae | Cedro costeño/ Cigarbox cedar | Hardwood | 1128 |
Cedrelinga cateniformis | Fabaceae | Achapo/Cedrorana | Hardwood | 1189 |
Cordia alliodora | Boraginaceae | Nogal cafetero/Laurel | Hardwood | 929 |
Dialyanthera gracilipes | Myristicaceae | Cuángare/Virola/White Cedar | Hardwood | 1100 |
Eucalyptus globulus | Myrtaceae | Eucalipto blanco/Blue gum | Hardwood | 1105 |
Handroanthus chrysanthus | Bignoniaceae | Guayacán amarillo/Roble amarillo/Trumpet Tree | Hardwood | 1106 |
Humiriastrum procerum | Humiriaceae | Chanul/Corozo | Hardwood | 1001 |
Fraxinus uhdei | Oleaceae | Urapan/fresno/Shamel ash | Hardwood | 1025 |
Cupresus lusitanica | Cupressaceae | Cipres/Pino Cipres | Softwood | 815 |
Pinus patula | Pinaceae | Pino patula/Ocote | Softwood | 571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano Saenz, D.A.; Ordoñez Urbano, C.F.; Gaitan Mesa, H.R.; Vargas-Cañas, R. Tropical Wood Species Recognition: A Dataset of Macroscopic Images. Data 2022, 7, 111. https://doi.org/10.3390/data7080111
Cano Saenz DA, Ordoñez Urbano CF, Gaitan Mesa HR, Vargas-Cañas R. Tropical Wood Species Recognition: A Dataset of Macroscopic Images. Data. 2022; 7(8):111. https://doi.org/10.3390/data7080111
Chicago/Turabian StyleCano Saenz, Daniel Alejandro, Carlos Felipe Ordoñez Urbano, Holman Raul Gaitan Mesa, and Rubiel Vargas-Cañas. 2022. "Tropical Wood Species Recognition: A Dataset of Macroscopic Images" Data 7, no. 8: 111. https://doi.org/10.3390/data7080111
APA StyleCano Saenz, D. A., Ordoñez Urbano, C. F., Gaitan Mesa, H. R., & Vargas-Cañas, R. (2022). Tropical Wood Species Recognition: A Dataset of Macroscopic Images. Data, 7(8), 111. https://doi.org/10.3390/data7080111