Shapley Value as a Quality Control for Mass Spectra of Human Glioblastoma Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Shapley Data
3. Results
3.1. Calculated Shapley Values
3.2. Shapley Value Modeling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.-H.; Hsieh, H.-Y.; Hsu, C.-C. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom. 2017, 6, S0060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin-Turner, S.; Reynolds, J.C.; Turner, M.A.; Heaney, L.M. Applications of Ambient Ionization Mass Spectrometry in 2021: An Annual Review. Anal. Sci. Adv. 2022, 3, 67–89. [Google Scholar] [CrossRef]
- Pekov, S.I.; Zhvansky, E.S.; Eliferov, V.A.; Sorokin, A.A.; Ivanov, D.G.; Nikolaev, E.N.; Popov, I.A. Determination of Brain Tissue Samples Storage Conditions for Reproducible Intraoperative Lipid Profiling. Molecules 2022, 27, 2587. [Google Scholar] [CrossRef] [PubMed]
- Pekov, S.I.; Bormotov, D.S.; Nikitin, P.V.; Sorokin, A.A.; Shurkhay, V.A.; Eliferov, V.A.; Zavorotnyuk, D.S.; Potapov, A.A.; Nikolaev, E.N.; Popov, I.A. Rapid Estimation of Tumor Cell Percentage in Brain Tissue Biopsy Samples Using Inline Cartridge Extraction Mass Spectrometry. Anal. Bioanal. Chem. 2021, 413, 2913–2922. [Google Scholar] [CrossRef] [PubMed]
- Iwano, T.; Yoshimura, K.; Inoue, S.; Odate, T.; Ogata, K.; Funatsu, S.; Tanihata, H.; Kondo, T.; Ichikawa, D.; Takeda, S. Breast Cancer Diagnosis Based on Lipid Profiling by Probe Electrospray Ionization Mass Spectrometry. Br. J. Surg. 2020, 107, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Giordano, S.; Siciliano, A.M.; Donadon, M.; Soldani, C.; Franceschini, B.; Lleo, A.; di Tommaso, L.; Cimino, M.; Torzilli, G.; Saiki, H.; et al. Versatile Mass Spectrometry-Based Intraoperative Diagnosis of Liver Tumor in a Multiethnic Cohort. Appl. Sci. 2022, 12, 4244. [Google Scholar] [CrossRef]
- Pirro, V.; Llor, R.S.; Jarmusch, A.K.; Alfaro, C.M.; Cohen-Gadol, A.A.; Hattab, E.M.; Cooks, R.G. Analysis of Human Gliomas by Swab Touch Spray-Mass Spectrometry: Applications to Intraoperative Assessment of Surgical Margins and Presence of Oncometabolites. Analyst 2017, 142, 4058–4066. [Google Scholar] [CrossRef]
- Shamraeva, M.A.; Bormotov, D.S.; Shamarina, E.V.; Bocharov, K.V.; Peregudova, O.V.; Pekov, S.I.; Nikolaev, E.N.; Popov, I.A. Spherical Sampler Probes Enhance the Robustness of Ambient Ionization Mass Spectrometry for Rapid Drugs Screening. Molecules 2022, 27, 945. [Google Scholar] [CrossRef]
- Del Mar Boronat Ena, M.; Cowan, D.A.; Abbate, V. Ambient Ionization Mass Spectrometry Applied to New Psychoactive Substance Analysis. Mass. Spectrom. Rev. 2021, 42, 3–34. [Google Scholar] [CrossRef]
- Ogrinc, N.; Attencourt, C.; Colin, E.; Boudahi, A.; Tebbakha, R.; Salzet, M.; Testelin, S.; Dakpé, S.; Fournier, I. Mass Spectrometry-Based Differentiation of Oral Tongue Squamous Cell Carcinoma and Nontumor Regions With the SpiderMass Technology. Front. Oral Health 2022, 3, 827360. [Google Scholar] [CrossRef]
- King, M.E.; Zhang, J.; Lin, J.Q.; Garza, K.Y.; DeHoog, R.J.; Feider, C.L.; Bensussan, A.; Sans, M.; Krieger, A.; Badal, S.; et al. Rapid Diagnosis and Tumor Margin Assessment during Pancreatic Cancer Surgery with the MasSpec Pen Technology. Proc. Natl. Acad. Sci. USA 2021, 118, e2104411118. [Google Scholar] [CrossRef]
- Xie, Y.R.; Castro, D.C.; Bell, S.E.; Rubakhin, S.S.; Sweedler, J.V. Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning. Anal. Chem. 2020, 92, 9338–9347. [Google Scholar] [CrossRef]
- Boiko, D.A.; Kozlov, K.S.; Burykina, J.V.; Ilyushenkova, V.V.; Ananikov, V.P. Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning. J. Am. Chem. Soc. 2022, 144, 14590–14606. [Google Scholar] [CrossRef]
- Piras, C.; Hale, O.J.; Reynolds, C.K.; Jones, A.K.B.; Taylor, N.; Morris, M.; Cramer, R. LAP-MALDI MS Coupled with Machine Learning: An Ambient Mass Spectrometry Approach for High-Throughput Diagnostics. Chem. Sci. 2022, 13, 1746–1758. [Google Scholar] [CrossRef]
- Liebal, U.W.; Phan, A.N.T.; Sudhakar, M.; Raman, K.; Blank, L.M. Machine Learning Applications for Mass Spectrometry-Based Metabolomics. Metabolites 2020, 10, 243. [Google Scholar] [CrossRef]
- Zavorotnyuk, D.S.; Pekov, S.I.; Sorokin, A.A.; Bormotov, D.S.; Levin, N.; Zhvansky, E.; Semenov, S.; Strelnikova, P.; Bocharov, K.V.; Vorobiev, A.; et al. Lipid Profiles of Human Brain Tumors Obtained by High-Resolution Negative Mode Ambient Mass Spectrometry. Data 2021, 6, 132. [Google Scholar] [CrossRef]
- Pekov, S.I.; Eliferov, V.A.; Sorokin, A.A.; Shurkhay, V.A.; Zhvansky, E.S.; Vorobyev, A.S.; Potapov, A.A.; Nikolaev, E.N.; Popov, I.A.; Alexander, S.V.; et al. Inline Cartridge Extraction for Rapid Brain Tumor Tissue Identification by Molecular Profiling. Sci. Rep. 2019, 9, 18960. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.A.; Race, A.M.; Steven, R.T.; Gilmore, I.S.; Bunch, J. Dimensionality Reduction of Mass Spectrometry Imaging Data Using Autoencoders. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI); IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Zhvansky, E.; Sorokin, A.; Shurkhay, V.; Zavorotnyuk, D.; Bormotov, D.; Pekov, S.; Potapov, A.; Nikolaev, E.; Popov, I. Comparison of Dimensionality Reduction Methods in Mass Spectra of Astrocytoma and Glioblastoma Tissues. Mass Spectrom. 2021, 10, A0094. [Google Scholar] [CrossRef]
- Zhvansky, E.S.; Eliferov, V.A.; Sorokin, A.A.; Shurkhay, V.A.; Pekov, S.I.; Bormotov, D.S.; Ivanov, D.G.; Zavorotnyuk, D.S.; Bocharov, K.V.; Khaliullin, I.G.; et al. Assessment of Variation of Inline Cartridge Extraction Mass Spectra. J. Mass Spectrom. 2021, 56, e4640. [Google Scholar] [CrossRef]
- Zhvansky, E.S.; Pekov, S.I.; Sorokin, A.A.; Shurkhay, V.A.; Eliferov, V.A.; Potapov, A.A.; Nikolaev, E.N.; Popov, I.A. Metrics for Evaluating the Stability and Reproducibility of Mass Spectra. Sci. Rep. 2019, 9, 914. [Google Scholar] [CrossRef] [Green Version]
- Gibb, S.; Strimmer, K. MALDIquant: A Versatile R Package for the Analysis of Mass Spectrometry Data. Bioinformatics 2012, 28, 2270–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, P.W.; Liang, P. Understanding Black-Box Predictions via Influence Functions. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1885–1894. [Google Scholar]
- Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction Error Estimation: A Comparison of Resampling Methods. Bioinformatics 2005, 21, 3301–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A.; Zou, J. Data Shapley: Equitable Valuation of Data for Machine Learning. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 2242–2251. [Google Scholar]
- Shapley, L.S. A value for n-person games. Contrib. Theory Games 1953, 2, 307–317. [Google Scholar]
- Sorokin, A.; Shurkhay, V.; Pekov, S.; Zhvansky, E.; Ivanov, D.; Kulikov, E.E.; Popov, I.; Potapov, A.; Nikolaev, E. Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry. Curr. Top. Med. Chem. 2019, 19, 1521–1534. [Google Scholar] [CrossRef]
- Pekov, S.I.; Sorokin, A.A.; Kuzin, A.A.; Bocharov, K.V.; Bormotov, D.S.; Shivalin, A.S.; Shurkhay, V.A.; Potapov, A.A.; Nikolaev, E.N.; Popov, I.A. Analysis of Phosphatidylcholines Alterations in Human Glioblastomas Ex Vivo. Biochem. Moscow Suppl. Ser. B Biomed. Chem. 2021, 15, 241–247. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Microsoft Corporation and Steve Weston. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.17. 2022. Available online: https://CRAN.R-project.org/package=doParallel (accessed on 10 July 2022).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
Scan Set | Number of Predictors | RMSE | R2 | MAE |
---|---|---|---|---|
Neg | 198 | 8.473 × 10−5 | 0.8972 | 5.0221 × 10−5 |
Pos | 200 | 6.550 × 10−5 | 0.8411 | 4.6361 × 10−5 |
Dataset | Duration (Seconds) | Model Accuracy | ||
---|---|---|---|---|
Negative Mode | Positive Mode | Negative Mode | Positive Mode | |
General | 38.738 | 24.070 | 0.9626 | 0.9860 |
Shapley-filtered | 15.730 | 23.354 | 0.9719 | 0.9881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavorotnyuk, D.S.; Sorokin, A.A.; Pekov, S.I.; Bormotov, D.S.; Eliferov, V.A.; Bocharov, K.V.; Nikolaev, E.N.; Popov, I.A. Shapley Value as a Quality Control for Mass Spectra of Human Glioblastoma Tissues. Data 2023, 8, 21. https://doi.org/10.3390/data8010021
Zavorotnyuk DS, Sorokin AA, Pekov SI, Bormotov DS, Eliferov VA, Bocharov KV, Nikolaev EN, Popov IA. Shapley Value as a Quality Control for Mass Spectra of Human Glioblastoma Tissues. Data. 2023; 8(1):21. https://doi.org/10.3390/data8010021
Chicago/Turabian StyleZavorotnyuk, Denis S., Anatoly A. Sorokin, Stanislav I. Pekov, Denis S. Bormotov, Vasiliy A. Eliferov, Konstantin V. Bocharov, Eugene N. Nikolaev, and Igor A. Popov. 2023. "Shapley Value as a Quality Control for Mass Spectra of Human Glioblastoma Tissues" Data 8, no. 1: 21. https://doi.org/10.3390/data8010021
APA StyleZavorotnyuk, D. S., Sorokin, A. A., Pekov, S. I., Bormotov, D. S., Eliferov, V. A., Bocharov, K. V., Nikolaev, E. N., & Popov, I. A. (2023). Shapley Value as a Quality Control for Mass Spectra of Human Glioblastoma Tissues. Data, 8(1), 21. https://doi.org/10.3390/data8010021