Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, D.; McWhinney, B. Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin. Biochem. Rev. 2019, 40, 135–146. [Google Scholar] [CrossRef]
- Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008, 4, 222. [Google Scholar] [CrossRef]
- Messner, C.; Demichev, V.; Bloomfield, N.; Yu, J.; White, M.; Kreidl, M.; Egger, A.-S.; Freiwald, A.; Ivosev, G.; Wasim, F.; et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 2021, 39, 846–854. [Google Scholar] [CrossRef]
- Comai, L.; Katz, J.; Mallick, P. Proteomics; Humana: New York, NY, USA, 2017; ISBN 978-1-4939-6747-6. [Google Scholar] [CrossRef]
- Yang, K.; Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016, 41, 954–969. [Google Scholar] [CrossRef] [Green Version]
- Pradas, I.; Huynh, K.; Cabré, R.; Ayala, V.; Meikle, P.; Jové, M.; Pamplona, R. Lipidomics Reveals a Tissue-Specific Fingerprint. Front. Physiol. 2018, 9, 1165. [Google Scholar] [CrossRef] [Green Version]
- Alberici, R.; Simas, R.; Sanvido, G.; Romão, W.; Lalli, P.; Benassi, M.; Cunha, I.; Eberlin, M. Ambient mass spectrometry: Bringing MS into the “real world”. Anal. Bioanal. Chem. 2010, 398, 265–294. [Google Scholar] [CrossRef]
- Eberlin, L.; Norton, I.; Orringer, D.; Dunn, I.; Liu, X.; Ide, J.; Jarmusch, A.; Ligon, K.L.; Jolesz, F.; Golby, A.; et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, K.-C.; Dénes, J.; Albrecht, K.; Szaniszló, T.; Balog, J.; Skoumal, R.; Katona, M.; Tóth, M.; Balogh, L.; Takáts, Z. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Ed. 2009, 48, 8240–8242. [Google Scholar] [CrossRef]
- Ogrinc, N.; Saudemont, P.; Balog, J.; Robin, Y.-M.; Gimeno, J.-P.; Pascal, Q.; Tierny, D.; Takats, Z.; Salzet, M.; Fournier, I. Water-assisted laser desorption/ionization mass spectrometry for minimally invasive in vivo and real-time surface analysis using SpiderMass. Nat. Protoc. 2019, 14, 3162–3182. [Google Scholar] [CrossRef]
- King, M.; Zhang, J.; Lin, J.; Garza, K.; DeHoog, R.; Feider, C.; Bensussan, A.; Sans, M.; Krieger, A.; Badal, S.; et al. Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the MasSpec Pen technology. Proc. Natl. Acad. Sci. USA 2021, 118, e2104411118. [Google Scholar] [CrossRef]
- Pekov, S.; Eliferov, V.; Sorokin, A.; Shurkhay, V.; Zhvansky, E.; Vorobyev, A.; Potapov, A.; Nikolaev, E.; Popov, I. Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling. Sci. Rep. 2019, 9, 18960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gredell, D.; Schroeder, A.; Belk, K.; Broeckling, C.; Heuberger, A.; Kim, S.-Y.; King, D.; Shackelford, S.; Sharp, J.; Wheeler, T.; et al. Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. Sci. Rep. 2019, 9, 5721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruyne, K.; Slabbinck, B.; Waegeman, W.; Vauterin, P.; De Baets, B.; Vandamme, P. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 2011, 34, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Deng, H.; Lu, H.; Zhang, Z. Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks. Anal. Chem. 2020, 92, 8649–8653. [Google Scholar] [CrossRef]
- Li, T.; Chen, L.; Gan, M. Quality control of imbalanced mass spectra from isotopic labeling experiments. BMC Bioinform. 2019, 20, 549. [Google Scholar] [CrossRef] [PubMed]
- Zhvansky, E.; Sorokin, A.; Shurkhay, V.; Zavorotnyuk, D.; Bormotov, D.; Pekov, S.; Potapov, A.; Nikolaev, E.; Popov, I. Comparison of Dimensionality Reduction Methods in Mass Spectra of Astrocytoma and Glioblastoma Tissues. Mass Spectrom. (Tokyo) 2021, 10, A0094. [Google Scholar] [CrossRef]
- Eberlin, L.; Norton, I.; Dill, A.; Golby, A.; Ligon, K.; Santagata, S.; Cooks, R.; Agar, N. Classifying Human Brain Tumors by Lipid Imaging with Mass Spectrometry. Cancer Res. 2012, 72, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.; Calligaris, D.; Regan, M.; Krummel, D.; Agar, J.; Kallay, L.; MacDonald, T.; Schniederjan, M.; Santagata, S.; Pomeroy, S.; et al. Rapid discrimination of pediatric brain tumors by mass spectrometry imaging. J. Neurooncol. 2018, 140, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Pirro, V.; Jarmusch, A.; Alfaro, C.; Hattab, E.; Cohen-Gadol, A.; Cooks, R. Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage by DESI-MS. Analyst 2017, 42, 449–454. [Google Scholar] [CrossRef]
- Pekov, S.; Bormotov, D.; Nikitin, P.; Sorokin, A.; Shurkhay, V.; Eliferov, V.; Zavorotnyuk, D.; Potapov, A.; Nikolaev, E.; Popov, I. Rapid estimation of tumor cell percentage in brain tissue biopsy samples using inline cartridge extraction mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 2913–2922. [Google Scholar] [CrossRef]
- Zhvansky, E.; Eliferov, V.; Sorokin, A.; Shurkhay, V.; Pekov, S.; Bormotov, D.; Ivanov, D.; Zavorotnyuk, D.; Bocharov, K.; Khalliullin, I.; et al. Assessment of variation of inline cartridge extraction mass spectra. J. Mass Spectrom. 2020, 56, e4640. [Google Scholar] [CrossRef] [PubMed]
- Pekov, S.; Sorokin, A.; Kuzin, A.; Bocharov, K.; Bormotov, D.; Shivalin, A.; Shurkhay, V.; Potapov, A.; Nikolaev, E.; Popov, I. Analysis of Phosphatidylcholines Alterations in Human Glioblastomas Ex Vivo. Biochem. Mosc. Suppl. Ser. B 2021, 15, 241–247. [Google Scholar] [CrossRef]
- Yannell, K.; Smith, K.; Alfaro, C.; Jarmusch, A.; Pirro, V.; Cooks, R. N-Acetylaspartate and 2-Hydroxyglutarate Assessed in Human Brain Tissue by Mass Spectrometry as Neuronal Markers of Oncogenesis. Clin. Chem. 2017, 63, 1766–1767. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16), San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Gibb, S.; Strimmer, K. MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics 2012, 28, 2270–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthold, M.; Cebron, N.; Dill, F.; Gabriel, T.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The Konstanz Information Miner. In Studies in Classification, Data Analysis, and Knowledge Organization; Data Analysis, Machine Learning and Applications; Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
Resolution | Mode | m/z Range | Aggregation | Sensitivity | Specificity | F-Measure | Accuracy |
---|---|---|---|---|---|---|---|
High | Neg | Wide | vote | 1.0 | 0.833 | 0.989 | 0.980 |
High | Neg | Wide | meanP | 1.0 | 0.556 | 0.971 | 0.947 |
High | Neg | Narrow | vote | 1.0 | 0.833 | 0.989 | 0.980 |
High | Neg | Narrow | meanP | 1.0 | 0.611 | 0.975 | 0.954 |
High | Pos | Wide | vote | 0.978 | 0.889 | 0.981 | 0.967 |
High | Pos | Wide | meanP | 1.0 | 0.333 | 0.957 | 0.921 |
High | Pos | Narrow | vote | 0.978 | 0.833 | 0.978 | 0.961 |
High | Pos | Narrow | meanP | 0.993 | 0.278 | 0.95 | 0.908 |
Low | Neg | Wide | meanP | 0.943 | 0.913 | 0.960 | 0.937 |
Low | Neg | Wide | vote | 0.968 | 0.797 | 0.959 | 0.934 |
Low | Neg | Narrow | vote | 0.973 | 0.754 | 0.959 | 0.932 |
Low | Neg | Narrow | meanP | 0.997 | 0.377 | 0.931 | 0.881 |
Low | Pos | Wide | vote | 0.996 | 0.879 | 0.984 | 0.974 |
Low | Pos | Wide | meanP | 0.992 | 0.862 | 0.980 | 0.967 |
Low | Pos | Narrow | meanP | 1.0 | 0.673 | 0.966 | 0.942 |
Low | Pos | Narrow | vote | 0.979 | 0.769 | 0.965 | 0.942 |
Resolution | Mode | m/z Range | Aggregation | Sensitivity | Specificity | F-Measure | Accuracy |
---|---|---|---|---|---|---|---|
High | Neg | Wide | vote | 1.0 | 0.25 | 0.914 | 0.85 |
High | Neg | Wide | meanP | 1.0 | 0.0 | 0.889 | 0.8 |
High | Neg | Narrow | meanP | 1.0 | 0.0 | 0.889 | 0.8 |
High | Neg | Narrow | vote | 1.0 | 0.0 | 0.889 | 0.8 |
High | Pos | Wide | meanP | 1.0 | 0.0 | 0.889 | 0.8 |
High | Pos | Wide | vote | 0.813 | 0.75 | 0.867 | 0.8 |
High | Pos | Narrow | vote | 1.0 | 0.5 | 0.941 | 0.9 |
High | Pos | Narrow | meanP | 1.0 | 0.0 | 0.889 | 0.8 |
Low | Neg | Wide | vote | 0.992 | 0.263 | 0.943 | 0.897 |
Low | Neg | Wide | meanP | 0.865 | 0.579 | 0.897 | 0.828 |
Low | Neg | Narrow | vote | 0.981 | 0.316 | 0.934 | 0.882 |
Low | Neg | Narrow | meanP | 1.0 | 0.111 | 0.931 | 0.873 |
Low | Pos | Wide | meanP | 1.0 | 0.438 | 0.958 | 0.924 |
Low | Pos | Wide | vote | 1.0 | 0.353 | 0.949 | 0.908 |
Low | Pos | Narrow | meanP | 1.0 | 0.0 | 0.929 | 0.867 |
Low | Pos | Narrow | vote | 0.981 | 0.063 | 0.923 | 0.858 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokin, A.A.; Bormotov, D.S.; Zavorotnyuk, D.S.; Eliferov, V.A.; Bocharov, K.V.; Pekov, S.I.; Nikolaev, E.N.; Popov, I.A. Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification. Data 2023, 8, 8. https://doi.org/10.3390/data8010008
Sorokin AA, Bormotov DS, Zavorotnyuk DS, Eliferov VA, Bocharov KV, Pekov SI, Nikolaev EN, Popov IA. Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification. Data. 2023; 8(1):8. https://doi.org/10.3390/data8010008
Chicago/Turabian StyleSorokin, Anatoly A., Denis S. Bormotov, Denis S. Zavorotnyuk, Vasily A. Eliferov, Konstantin V. Bocharov, Stanislav I. Pekov, Evgeny N. Nikolaev, and Igor A. Popov. 2023. "Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification" Data 8, no. 1: 8. https://doi.org/10.3390/data8010008
APA StyleSorokin, A. A., Bormotov, D. S., Zavorotnyuk, D. S., Eliferov, V. A., Bocharov, K. V., Pekov, S. I., Nikolaev, E. N., & Popov, I. A. (2023). Aggregation of Multimodal ICE-MS Data into Joint Classifier Increases Quality of Brain Cancer Tissue Classification. Data, 8(1), 8. https://doi.org/10.3390/data8010008