LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis
Abstract
:1. Introduction
2. Related Work
2.1. Panel Survey Data
2.2. Latent Growth Curve Model
2.3. PLS-SEM for Panel Survey Data
3. Materials and Methods
3.1. Phase 1—Systematic Literature Review (SLR)
3.1.1. Formulating the Research Problems
3.1.2. Systematic Searching Strategies
- Searching the Literature (Identification)
- 2.
- Screening the Inclusion
- 3.
- Eligibility
3.2. Phase 2—Bibliometric Analysis
3.2.1. Data Extraction
3.2.2. Analyzing and Synthesizing the Data
3.3. Phase 3—Content Analysis
3.3.1. Quality Appraisal
3.3.2. Theme Generation
4. Results
4.1. Distributions and Trends
4.1.1. Growth of Publications
4.1.2. Co-Authorship Analysis
4.1.3. Citation Analysis
4.1.4. Co-Citation Analysis
4.1.5. Keyword Co-Occurrence Analysis
4.2. Themes Generation
4.2.1. Identification of PLS-SEM Approaches and Their Limitations
4.2.2. Procedure of the Approaches
- Model 1: Pre and Post Approach with Different Construct
- Model 2: Path Comparison Approach
- Model 3: Cross-Lagged Approach
- Model 4: Pre and Post Approach with the Same Construct
- Model 5: Evaluation Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No | Authors | Title | Year | Journal | DOI |
---|---|---|---|---|---|
1 | Limayem M., Cheung C.M.K. | Understanding information systems continuance: The case of Internet-based learning technologies | 2008 | Information and Management | 10.1016/j.im.2008.02.005 |
2 | Baer J.S., Sampson P.D., Barr H.M., Connor P.D., Streissguth A.P. | A 21-year longitudinal analysis of the effects of prenatal alcohol exposure on young adult drinking | 2003 | Archives of General Psychiatry | 10.1001/archpsyc.60.4.377 |
3 | Bontis N., Booker L.D., Serenko A. | The mediating effect of organizational reputation on customer loyalty and service recommendation in the banking industry | 2007 | Management Decision | 10.1108/00251740710828681 |
4 | Islam A.K.M.N. | Investigating e-learning system usage outcomes in the university context | 2013 | Computers and Education | 10.1016/j.compedu.2013.07.037 |
5 | Barnes S.J., Mattsson J., Sørensen F. | Remembered experiences and revisit intentions: A longitudinal study of safari park visitors | 2016 | Tourism Management | 10.1016/j.tourman.2016.06.014 |
6 | Nelson B., Martin R.P., Hodge S., Havill V., Kamphaus R. | Modeling the prediction of elementary school adjustment from preschool temperament | 1999 | Personality and Individual Differences | 10.1016/S0191-8869(98)00174-3 |
7 | Hannula-Sormunen M.M., Lehtinen E., Räsänen P. | Preschool Children’s Spontaneous Focusing on Numerosity, Subitizing, and Counting Skills as Predictors of Their Mathematical Performance Seven Years Later at School | 2015 | Mathematical Thinking and Learning | 10.1080/10986065.2015.1016814 |
8 | Bronstein P., Ginsburg G.S., Herrera I.S. | Parental predictors of motivational orientation in early adolescence: A longitudinal study | 2005 | Journal of Youth and Adolescence | 10.1007/s10964-005-8946-0 |
9 | Sosik J.J., Potosky D., Jung D.I. | Adaptive self-regulation: Meeting others’ expectations of leadership and performance | 2002 | Journal of Social Psychology | 10.1080/00224540209603896 |
10 | Chen C.-P., Lai H.-M., Ho C.-Y. | Why do teachers continue to use teaching blogs? the roles of perceived voluntariness and habit | 2015 | Computers and Education | 10.1016/j.compedu.2014.11.017 |
11 | Benitez J., Chen Y., Teo T.S.H., Ajamieh A. | Evolution of the impact of e-business technology on operational competence and firm profitability: A panel data investigation | 2018 | Information and Management | 10.1016/j.im.2017.08.002 |
12 | Gupta V.K., Huang R., Niranjan S. | A longitudinal examination of the relationship between Team Leadership and Performance | 2010 | Journal of Leadership and Organizational Studies | 10.1177/1548051809359184 |
13 | Palos-Sanchez P., Saura J.R., Martin-Velicia F. | A study of the effects of programmatic advertising on users’ concerns about privacy overtime | 2019 | Journal of Business Research | 10.1016/j.jbusres.2018.10.059 |
14 | Gegenfurtner A. | Dimensions of Motivation to Transfer: A Longitudinal Analysis of Their Influence on Retention, Transfer, and Attitude Change | 2013 | Vocations and Learning | 10.1007/s12186-012-9084-y |
15 | Wei Y., Zhu X., Li Y., Yao T., Tao Y. | Influential factors of national and regional CO2 emission in China based on combined model of DPSIR and PLS-SEM | 2019 | Journal of Cleaner Production | 10.1016/j.jclepro.2018.11.155 |
16 | Palos-Sanchez, P; Saura, JR; Martin-Velicia, F | A study of the effects of programmatic advertising on users’ concerns about privacy overtime | 2019 | Journal Of Business Research | 10.1016/j.jbusres.2018.10.059 |
17 | Roemer E. | A tutorial on the use of PLS path modeling in longitudinal studies | 2016 | Industrial Management and Data Systems | 10.1108/IMDS-07-2015-0317 |
18 | Saeed K.A., Abdinnour S., Lengnick-Hall M.L., Lengnick-Hall C.A. | Examining the Impact of Pre-Implementation Expectations on Post-Implementation Use of Enterprise Systems: A Longitudinal Study | 2010 | Decision Sciences | 10.1111/j.1540-5915.2010.00285.x |
19 | Roxas B. | Effects of entrepreneurial knowledge on entrepreneurial intentions: A longitudinal study of selected South-east Asian business students | 2014 | Journal of Education and Work | 10.1080/13639080.2012.760191 |
20 | Jung D.I., Sosik J.J. | Effects of group characteristics on work group performance: A longitudinal investigation | 1999 | Group Dynamics | 10.1037/1089-2699.3.4.279 |
21 | Courty A., Godart N., Lalanne C., Berthoz S. | Alexithymia, a compounding factor for eating and social avoidance symptoms in anorexia nervosa | 2015 | Comprehensive Psychiatry | 10.1016/j.comppsych.2014.09.011 |
22 | Marjoribanks K. | Family background, social and academic capital, and adolescents’ aspirations: A mediational analysis | 1997 | Social Psychology of Education | 10.1023/A:1009602307141 |
23 | Piyathasanan B., Mathies C., Patterson P.G., de Ruyter K. | Continued value creation in crowdsourcing from creative process engagement | 2018 | Journal of Services Marketing | 10.1108/JSM-02-2017-0044 |
24 | Gray D.M., D’Alessandro S., Johnson L.W., Carter L. | Inertia in services causes and consequences for switching | 2017 | Journal of Services Marketing | 10.1108/JSM-12-2014-0408 |
25 | Pai H.-C. | An integrated model for the effects of self-reflection and clinical experiential learning on clinical nursing performance in nursing students: A longitudinal study | 2016 | Nurse Education Today | 10.1016/j.nedt.2016.07.011 |
26 | Prati G., Albanesi C., Pietrantoni L. | The Reciprocal Relationship between Sense of Community and Social Well-Being: A Cross-Lagged Panel Analysis | 2016 | Social Indicators Research | 10.1007/s11205-015-1012-8 |
27 | Roemer E., Henseler J. | The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany | 2022 | Technology in Society | 10.1016/j.techsoc.2022.101938 |
28 | Chaparro-Peláez J., Pereira-Rama A., Pascual-Miguel F.J. | Inter-organizational information systems adoption for service innovation in building sector | 2014 | Journal of Business Research | 10.1016/j.jbusres.2013.11.026 |
29 | Lauro N.C., Grassia M.G., Cataldo R. | Model-Based Composite Indicators: New Developments in Partial Least Squares-Path Modeling for the Building of Different Types of Composite Indicators | 2018 | Social Indicators Research | 10.1007/s11205-016-1516-x |
30 | Zhu X., Wei Y., Lai Y., Li Y., Zhong S., Dai C. | Empirical analysis of the driving factors of China’s ’Land finance’ mechanism using soft budget constraint theory and the PLS-SEM model | 2019 | Sustainability (Switzerland) | 10.3390/su11030742 |
31 | Lee W.-K. | An elaboration likelihood model-based longitudinal analysis of attitude change during the process of IT acceptance via an education program | 2012 | Behaviour and Information Technology | 10.1080/0144929X.2010.547219 |
32 | Hallencreutz J., Parmler J. | Important drivers for customer satisfaction–from a product focus to image and service quality | 2021 | Total Quality Management and Business Excellence | 10.1080/14783363.2019.1594756 |
33 | Guo Z., Tan F.B., Turner T., Xu H. | Group norms, media preferences, and group meeting success: A longitudinal study | 2010 | Computers in Human Behavior | 10.1016/j.chb.2010.01.001 |
34 | Robina-Ramírez R., Medina Merodio J.A., McCallum S. | What role do emotions play in transforming students’ environmental behavior at school? | 2020 | Journal of Cleaner Production | 10.1016/j.jclepro.2020.120638 |
References
- Sardana, K.; Gupta, T.; Kumar, B.; Gautam, H.K.; Garg, V.K. A cross-sectional pilot study of antibiotic resistance in Propionibacterium acnes strains in Indian acne patients using 16s-RNA polymerase chain reaction: A comparison among treatment modalities including antibiotics, benzoyl peroxide, and isotretinoin. Indian J. Dermatol. 2016, 61, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Datta, B.; Berman, A.; Hatzigeorgiou, C. A cross-sectional study of financial distress in persons with multimorbidity. Prev. Med. Rep. 2021, 23, 101464. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.; Setia, M.S.; Singh Setia, M.; Row-Kavi, A.; Anand, V.; Jerajani, H. Male sex workers: Are we ignoring a risk group in Male sex workers: Are we ignoring a risk group in Mumbai, India? Indian J. Dermatol. Venereol. Leprol. 2009, 75, 41–46. [Google Scholar]
- Cheung, M.L.; Pires, G.D.; Iii, P.J.R.; De Oliveira, M.J. Driving COBRAs: The power of social media marketing. Mark. Intell. Plan. 2020, 39, 361–376. [Google Scholar] [CrossRef]
- Milicev, J.; Qualter, P.; Goodfellow, C.; Inchley, J.; Simpson, S.; Leyland, A.; Karicha, K.; Long, E. The prospective relationship between loneliness, life satisfaction and psychological distress before and during the COVID-19 pandemic in the UK. J. Public Health 2022, 30, 2717. [Google Scholar] [CrossRef]
- Michel, J.S.; Rotch, M.A.; Carson, J.E.; Bowling, N.A.; Shifrin, N.V. Flattening the Latent Growth Curve? Explaining Within-Person Changes in Employee Well-Being during the COVID-19 Pandemic. Occup. Health Sci. 2021, 5, 247–275. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Sheridan, J.; Newcombe, D. Ten-Year Trajectories of Alcohol Consumption in Older Adult New Zealanders. J. Gerontol. Ser. B 2019, 76, 496–506. [Google Scholar] [CrossRef]
- Jeon, H.G.; Jeong, E.J.; Lee, S.J.; Kim, J.A. Exploring the Mechanism of Pathological Gaming in Adolescents: Focused on the Mediation Paths and Latent Group Comparison. Front. Psychol. 2022, 12, 756328. [Google Scholar] [CrossRef]
- Batchelder, A.W.; Glynn, T.R.; Moskowitz, J.T.; Neilands, T.B.; Dilworth, S.; Rodriguez, S.L.; Carrico, A.W. The shame spiral of addiction: Negative self-conscious emotion and substance use. PLoS ONE 2022, 17, e0265480. [Google Scholar] [CrossRef]
- Ho, T.T.H.; Le, V.H.; Nguyen, D.T.; Nguyen, C.T.P.; Nguyen, H.T.T. Effects of career development learning on students’ perceived employability: A longitudinal study. High. Educ. 2022, 1–19. [Google Scholar] [CrossRef]
- Wu, W.; West, S.G.; Taylor, A.B. Evaluating model fit for growth curve models: Integration of fit indices from SEM and MLM frameworks. Psychol. Methods 2009, 14, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.K.; Wickrama, K.K.A.S.; O’Neal, C.W. Application of Latent Growth Curve Analysis With Categorical Responses in Social Behavioral Research. Struct. Equ. Model. A Multidiscip. J. 2017, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Isiordia, M.; Ferrer, E. Curve of Factors Model: A Latent Growth Modeling Approach for Educational Research. Educ. Psychol. Meas. 2016, 78, 203–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Huebner, E.S.; Tian, L. Neuroticism and cyberbullying among elementary school students: A latent growth curve modeling approach. Pers. Individ. Differ. 2020, 171, 110472. [Google Scholar] [CrossRef]
- Tomasik, M.J.; Helbling, L.A.; Moser, U. Educational gains of in-person vs. distance learning in primary and secondary schools: A natural experiment during the COVID-19 pandemic school closures in Switzerland. Int. J. Psychol. 2020, 56, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, M.S.; Holt, T.; Ormhaug, S.M.; Jensen, T.K. Perceived social support and posttraumatic stress symptoms in children and youth in therapy: A parallel process latent growth curve model. Behav. Res. Ther. 2020, 132, 103655. [Google Scholar] [CrossRef]
- Curran, P.J.; Obeidat, K.; Losardo, D. Twelve Frequently Asked Questions About Growth Curve Modeling. J. Cogn. Dev. 2010, 11, 121–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felt, J.; Depaoli, S.; Tiemensma, J. Latent Growth Curve Models for Biomarkers of the Stress Response. Front. Neurosci. 2017, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440. [Google Scholar] [CrossRef] [Green Version]
- Willaby, H.W.; Costa, D.S.; Burns, B.D.; MacCann, C.; Roberts, R.D. Testing complex models with small sample sizes: A historical overview and empirical demonstration of what Partial Least Squares (PLS) can offer differential psychology. Pers. Individ. Differ. 2015, 84, 73–78. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107. [Google Scholar] [CrossRef]
- Roemer, E. A tutorial on the use of PLS path modeling in longitudinal studies. Ind. Manag. Data Syst. 2016, 116, 1901–1921. [Google Scholar] [CrossRef]
- Phulwani, P.R.; Kumar, D.; Goyal, P. A Systematic Literature Review and Bibliometric Analysis of Recycling Behavior. J. Glob. Mark. 2020, 33, 354–376. [Google Scholar] [CrossRef]
- Nagariya, R.; Kumar, D.; Kumar, I. Service supply chain: From bibliometric analysis to content analysis, current research trends and future research directions. Benchmarking 2020, 28, 333–369. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 2019, 45, 175–194. [Google Scholar] [CrossRef]
- Muñoz, E.; Robins, R.W.; Sutin, A.R. Perceived ethnic discrimination and cognitive function: A 12-year longitudinal study of Mexican-origin adults. Soc. Sci. Med. 2022, 311, 115296. [Google Scholar] [CrossRef]
- Yarrington, J.S.; Vinograd, M.; Williams, A.L.; Wolitzky-Taylor, K.B.; Zinbarg, R.E.; Mineka, S.; Waters, A.M.; Craske, M.G. Fear-potentiated startle predicts longitudinal change in transdiagnostic symptom dimensions of anxiety and depression. J. Affect. Disord. 2022, 311, 399–406. [Google Scholar] [CrossRef]
- Russo, S.; Colloca, P.; Cavazza, N.; Roccato, M. Household crowding during the COVID-19 lockdown fosters anti-democracy even after 17 months: A 5-wave latent growth curve study. J. Environ. Psychol. 2022, 83, 101867. [Google Scholar] [CrossRef]
- McArdle, J.J. Dynamic but Structural Equation Modeling of Repeated Measures Data. In Handbook of Multivariate Experimental Psychology; Nesselroade, J.R., Cattell, R.B., Eds.; Springer: New York, USA, 1988; pp. 561–614. [Google Scholar]
- McArdle, J.J. Latent variable growth within behavior genetic models. Behav. Genet. 1986, 16, 163–200. [Google Scholar]
- Bollen, K.A.; Curran, P.J. Latent Curve Models: A Structural Equation Perspective; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wold, H. Path Models with Latent Variables: The NIPALS Approach. In Quantitative Sociology; Academic Press: Cambridge, MA, USA, 1975; pp. 307–357. [Google Scholar] [CrossRef]
- Wold, H. Partial Least Squares. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; John Wiley: New York, NY, USA, 1985; pp. 581–591. [Google Scholar]
- Lohmoller, J.-B.; Berlin, S.-V.; Gmbh, H. Latent Variable Path Modeling with Partial Least Squares; Physica-Verlag Heidelberg: Heidelberg, Germany, 1989. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. Available online: https://www.researchgate.net/publication/311766005 (accessed on 9 November 2022).
- Nitzl, C.; Chin, W.W. The case of partial least squares (PLS) path modeling in managerial accounting research. J. Manag. Control. 2017, 28, 137–156. [Google Scholar] [CrossRef]
- Haenlein, M.; Kaplan, A.M. A Beginner’s Guide to Partial Least Squares Analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Shea, C. Efficacy-performance spirals: An empirical test. J. Manag. 2000, 26, 791–812. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Groth, M.; Paul, M.; Gremler, D.D. Are All Smiles Created Equal? How Emotional Contagion and Emotional Labor Affect Service Relationships. J. Mark. 2006, 70, 1547–7185. Available online: http://www.marketingpower.com/jmblog (accessed on 14 November 2022). [CrossRef]
- Johnson, M.D.; Herrmann, A.; Huber, F. The Evolution of Loyalty Intentions. J. Mark. 2006, 70, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Sundaram, S.; Chin, W. Factors Leading to Sales Force Automation Use: A Longitudinal Analysis. J. Pers. Sell. Sales Manag. 2002, 22, 145–156. [Google Scholar]
- Jacobs, N.; Hagger, M.S.; Streukens, S.; De Bourdeaudhuij, I.; Claes, N. Testing an integrated model of the theory of planned behaviour and self-determination theory for different energy balance-related behaviours and intervention intensities. Br. J. Health Psychol. 2011, 16, 113–134. [Google Scholar] [CrossRef]
- Inamdar, Z.; Raut, R.; Narwane, V.S.; Gardas, B.; Narkhede, B.; Sagnak, M. A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. J. Enterp. Inf. Manag. 2020, 34, 101–139. [Google Scholar] [CrossRef]
- Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. Work. Pap. Inf. Systems 2010, 10, 2010. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2017, 39, 93–112. [Google Scholar] [CrossRef]
- Lockwood, C.; Munn, Z.; Porritt, K. Qualitative research synthesis. Int. J. Evid. Based Healthc. 2015, 13, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Shaffril, H.A.M.; Ahmad, N.; Samsuddin, S.F.; Abu Samah, A.; Hamdan, M.E. Systematic literature review on adaptation towards climate change impacts among indigenous people in the Asia Pacific regions. Int. J. Evid. Based Healthc. 2015, 39, 879–910. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. The data source of this study is Web of Science Core Collection? Not enough. Scientometrics 2019, 121, 1815–1824. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2017, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, Q.; Lai, K.-H. Corporate social responsibility for supply chain management: A literature review and bibliometric analysis. J. Clean. Prod. 2017, 158, 296–307. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Okoli, C. A Guide to Conducting a Standalone Systematic Literature Review. Commun. Assoc. Inf. Syst. 2015, 37, 879–910. [Google Scholar] [CrossRef] [Green Version]
- Levy, Y.; Ellis, T.J. A Systems Approach to Conduct an Effective Literature Review in Support of Information Systems Research. Informing Sci. Int. J. Emerg. Transdiscipl. 2006, 9, 181–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 2006, 80, 571–583. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical Bibliography or Bibliometrics? J. Doc. 1969, 25, 348–349. [Google Scholar]
- Vogel, R.; Güttel, W.H. The Dynamic Capability View in Strategic Management: A Bibliometric Review. Int. J. Manag. Rev. 2013, 15, 426–446. [Google Scholar] [CrossRef]
- Liang, T.-P.; Liu, Y.-H. Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics study. Expert Syst. Appl. 2018, 111, 2–10. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Jia, F.; Brown, S.; Gong, Y.; Xu, Y. Supply chain finance: A systematic literature review and bibliometric analysis. Int. J. Prod. Econ. 2018, 204, 160–173. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Handbook of Market Research; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Limayem, M.; Cheung, C.M. Understanding information systems continuance: The case of Internet-based learning technologies. Inf. Manag. 2008, 45, 227–232. [Google Scholar] [CrossRef]
- Islam, A.N. Investigating e-learning system usage outcomes in the university context. Comput. Educ. 2013, 69, 387–399. [Google Scholar] [CrossRef]
- Chen, C.-P.; Lai, H.-M.; Ho, C.-Y. Why do teachers continue to use teaching blogs? The roles of perceived voluntariness and habit. Comput. Educ. 2015, 82, 236–249. [Google Scholar] [CrossRef]
- Guo, Z.; Tan, F.B.; Turner, T.; Xu, H. Group norms, media preferences, and group meeting success: A longitudinal study. Comput. Hum. Behav. 2010, 26, 645–655. [Google Scholar] [CrossRef]
- Roxas, B. Effects of entrepreneurial knowledge on entrepreneurial intentions: A longitudinal study of selected South-east Asian business students. J. Educ. Work. 2013, 27, 432–453. [Google Scholar] [CrossRef]
- Roemer, E.; Henseler, J. The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany. Technol. Soc. 2022, 68, 101938. [Google Scholar] [CrossRef]
- Robina-Ramírez, R.; Merodio, J.A.M.; McCallum, S. What role do emotions play in transforming students’ environmental behaviour at school? J. Clean. Prod. 2020, 258, 120638. [Google Scholar] [CrossRef]
- Keil, M.; Tan, B.C.Y.; Wei, K.-K.; Saarinen, T.; Tuunainen, V.; Wassenaar, A. A Cross-Cultural Study on Escalation of Commitment Behavior in Software Projects. Manag. Inf. Syst. Q. 2000, 24, 299–323. [Google Scholar] [CrossRef]
- Williams, L.J.; Vandenberg, R.J.; Edwards, J.R. 12 Structural Equation Modeling in Management Research: A Guide for Improved Analysis. Acad. Manag. Ann. 2009, 3, 543–604. [Google Scholar] [CrossRef]
- Crowley, S.L.; Fan, X. Structural Equation Modeling: Basic Concepts and Applications in Personality Assessment Research. J. Pers. Assess. 1997, 68, 508–531. [Google Scholar] [CrossRef]
- Wright, S. The method of path coefficients. Ann. Math. Stat. 1934, 5, 161–215. [Google Scholar] [CrossRef]
- Spearman, C. “General Intelligence”, Objectively Determined and Measured. Am. J. Psychol. 1904, 15, 201–292. [Google Scholar] [CrossRef]
- Preacher, K.J.; Wichman, A.L.; Maccallum, R.C.; Briggs, N.E. Latent Growth Curve Modeling; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Mittal, V.; Kumar, P.; Tsiros, M. Attribute-Level Performance, Satisfaction, and Behavioral Intentions over Time: A Consumption-System Approach. J. Mark. 1999, 63, 88–101. [Google Scholar] [CrossRef]
Database | Search String |
---|---|
Scopus | TITLE-ABS-KEY(("panel survey" OR "longitudinal survey" OR "panel data" OR "longitudinal") AND ("partial least squares" OR "latent growth curve" OR "LGCM" OR "PLS Path" OR "PLS-SEM")) |
WoSCC | TS=(("panel survey" OR "longitudinal survey" OR "panel data" OR "longitudinal") AND ("partial least squares" OR "latent growth curve" OR "LGCM" OR "PLS Path" OR "PLS-SEM")) |
Database Criteria | Inclusion | Exclusion |
---|---|---|
Timeline | All records in Scopus and WoSCC databases. | Other databases. |
Language | English. | Other languages. |
Document Type | Article, Article review, and Conference. | Books and chapters in a book. |
Subject area | Psychology, Social Sciences, Business, Management, Accounting, Mathematics, Economics, and Multidisciplinary, Behavioral Sciences | Other subject areas in bibliographic databases of Scopus and WoSCC. |
Method | LGCM, PLS-SEM, and Partial Least Squares. | Multilevel Linear Growth Curve Model, Bayesian Growth Curve Model, Repeated Measure ANOVA, Generalized estimating equations, and Mixed effect regression. |
Type of data | Longitudinal survey and panel survey data. | Cross-sectional data. |
Source (Journal) | Total Publications | Total Citations |
---|---|---|
Developmental Psychology | 51 | 4231 |
Structural Equation Modeling | 30 | 1267 |
Journal of Youth and Adolescence | 29 | 930 |
PLoS ONE | 28 | 498 |
Psychology and Aging | 25 | 1061 |
Journal of Affective Disorders | 25 | 234 |
Journal of Abnormal Child Psychology | 22 | 1043 |
Journals of Gerontology | 21 | 584 |
Frontiers in Psychology | 20 | 200 |
Journal of Adolescence | 19 | 741 |
Rank | Authors | Year | DOI | Citations |
---|---|---|---|---|
1 | McArdle J.J., Epstein D. | 1987 | 10.2307/1130295 | 653 |
2 | Ge X., Lorenz F.O., Conger R.D., Elder Jr. G.H., Simons R.L. | 1994 | 10.1037/0012-1649.30.4.467 | 625 |
3 | Plutzer E. | 2002 | 10.1017/S0003055402004227 | 549 |
4 | McArdle J.J., Ferrer-Caja E., Hamagami F., Woodcock R.W. | 2002 | 10.1037/0012-1649.38.1.115 | 401 |
5 | Wang M. | 2007 | 10.1037/0021-9010.92.2.455 | 388 |
Rank | Authors | Year | DOI | Citations |
---|---|---|---|---|
1 | Limayem M., Cheung C.M.K. | 2008 | 10.1016/j.im.2008.02.005 | 369 |
2 | Baer J.S., Sampson P.D., Barr H.M., Connor P.D., Streissguth A.P. | 2003 | 10.1001/archpsyc.60.4.377 | 284 |
3 | Wong V.W.-S., Tse C.-H., Lam T.T.-Y., Wong G.L.-H. | 2013 | 10.1371/jounal.pone.0062885 | 217 |
4 | Dodge K.A., Malone P.S., Lansford J.E., Shari M., Pettit G.S., Bates. | 2009 | 10.1111/j.15405834.2009.00528.x | 210 |
5 | Hennig-Thurau T., Henning V., Sattler H. | 2007 | 10.1509/jmkg.71.4.001 | 208 |
Cluster 1 (Red) | Cluster 2 (Green) | Cluster 3 (Blue) |
---|---|---|
Mental Health (27) | Developmental Trajectories (48) | Longitudinal Study (292) |
Self-Efficacy (18) | Gender (47) | Aging (22) |
Social Support (18) | Personality Development (38) | Older Adults (15) |
Cognitive Aging (16) | Parenting (26) | Cognition (14) |
PLS-SEM (14) | Substance Use (20) | Psychological Well-Being (12) |
Adoption (12) | Academic Achievement (15) | Dementia (11) |
Life Satisfaction (12) | Growth Curve Modeling (14) | Partial Least Squares (11) |
Stress (12) | Motivation (14) | Cluster 6 (Light Blue) |
Bullying (11) | Effortful Control (10) | Emerging Adulthood (16) |
Education (11) | Self-Regulation (10) | Delinquency (12) |
Job Satisfaction (10) | Well-Being (10) | Cluster 7 (Orange) |
Cluster 4 (Yellow) | Cluster 5 (Purple) | Latent Growth Curve Model (294) |
Depression (91) | Adolescence (169) | Children (10) |
Trajectories (32) | Alcohol (32) | Cluster 8 (Brown) |
Depressive Symptom (31) | Physical Activity (19) | Satisfaction (10) |
Anxiety (28) | Aggression (10) | Social Media (10) |
Self-Esteem (18) | Smoking (10) | Cluster 9 (Pink) |
Life Course (12) | Structural Equation Modeling (22) | |
Loneliness (12) | COVID-19 (15) |
Type of Model | Descriptions | Limitations | Authors |
---|---|---|---|
Model 1: Pre and Post approach with different construct. |
|
| [65,66,67] |
Model 2: Path Comparison approach. |
|
| [68] |
Model 3: Cross-lagged approach. |
|
| [69] |
Model 4: Pre and Post approach with same construct. |
|
| [43] |
Model 5: Evaluation approach. |
|
| [41,70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Ghazali, Z.; Wan Yaacob, W.F.; Wan Omar, W.M. LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis. Data 2023, 8, 32. https://doi.org/10.3390/data8020032
Mohd Ghazali Z, Wan Yaacob WF, Wan Omar WM. LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis. Data. 2023; 8(2):32. https://doi.org/10.3390/data8020032
Chicago/Turabian StyleMohd Ghazali, Zulkifli, Wan Fairos Wan Yaacob, and Wan Marhaini Wan Omar. 2023. "LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis" Data 8, no. 2: 32. https://doi.org/10.3390/data8020032
APA StyleMohd Ghazali, Z., Wan Yaacob, W. F., & Wan Omar, W. M. (2023). LGCM and PLS-SEM in Panel Survey Data: A Systematic Review and Bibliometric Analysis. Data, 8(2), 32. https://doi.org/10.3390/data8020032