Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Description of Algorithms Used in the Research
2.3. Classification Performance Evaluation
2.4. Landsat Data
2.5. Data Collection
2.6. LULC Classes
3. Results
3.1. Learning Configuration
3.2. Hyperparameter Tuning
3.3. Results of LULC Classification Using Landsat-5 Data
4. Discussion
4.1. Possible Reasons of Classification Results
4.2. Possible Causes of Misclassification
4.3. Limitations and Assumptions
4.4. Future Research and Improvements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, F.; Goparaju, L.; Qayum, A. LULC Analysis of Urban Spaces Using Markov Chain Predictive Model at Ranchi in India. Spat. Inf. Res. 2017, 25, 351–359. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M.; Shahfahad. Analyses of Land Use Land Cover (LULC) Change and Built-up Expansion in the Suburb of a Metropolitan City: Spatio-Temporal Analysis of Delhi NCR Using Landsat Datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between LULC Changes and SUHI in Cities: Insights from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Hadi, S.J.; Shafri, H.Z.M.; Mahir, M.D. Modelling LULC for the Period 2010–2030 Using GIS and Remote Sensing: A Case Study of Tikrit, Iraq. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012053. [Google Scholar] [CrossRef]
- Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC Using Remote Sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Ali, K.; Johnson, B.A. Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors 2022, 22, 8750. [Google Scholar] [CrossRef]
- Mugari, E.; Masundire, H. Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana. Land 2022, 11, 2057. [Google Scholar] [CrossRef]
- Roy, A.; Inamdar, A.B. Multi-Temporal Land Use Land Cover (LULC) Change Analysis of a Dry Semi-Arid River Basin in Western India Following a Robust Multi-Sensor Satellite Image Calibration Strategy. Heliyon 2019, 5, e01478. [Google Scholar] [CrossRef]
- Yonaba, R.; Koïta, M.; Mounirou, L.A.; Tazen, F.; Queloz, P.; Biaou, A.C.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial and Transient Modelling of Land Use/Land Cover (LULC) Dynamics in a Sahelian Landscape under Semi-Arid Climate in Northern Burkina Faso. Land Use Policy 2021, 103, 105305. [Google Scholar] [CrossRef]
- Njoku, E.A.; Tenenbaum, D.E. Quantitative Assessment of the Relationship between Land Use/Land Cover (LULC), Topographic Elevation and Land Surface Temperature (LST) in Ilorin, Nigeria. Remote Sens. Appl. Soc. Environ. 2022, 27, 100780. [Google Scholar] [CrossRef]
- Tolentino, F.M.; de Lourdes Bueno Trindade Galo, M. Selecting Features for LULC Simultaneous Classification of Ambiguous Classes by Artificial Neural Network. Remote Sens. Appl. Soc. Environ. 2021, 24, 100616. [Google Scholar] [CrossRef]
- Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sens. 2019, 11, 1713. [Google Scholar] [CrossRef]
- Jamali, A. Evaluation and Comparison of Eight Machine Learning Models in Land Use/Land Cover Mapping Using Landsat 8 OLI: A Case Study of the Northern Region of Iran. SN Appl. Sci. 2019, 1, 1448. [Google Scholar] [CrossRef]
- Tuzcu, A.; Taskin, G.; Musaoğlu, N. Comparison of Object Based Machine Learning Classifications of Planetscope and Worldview-3 Satellite Images for Land Use/Cover. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1887–1892. [Google Scholar] [CrossRef]
- Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen, W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M.; et al. Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens. 2021, 13, 1349. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Elamin, A.; El-Rabbany, A. UAV-Based Multi-Sensor Data Fusion for Urban Land Cover Mapping Using a Deep Convolutional Neural Network. Remote Sens. 2022, 14, 4298. [Google Scholar] [CrossRef]
- Basheer, S.; Wang, X.; Farooque, A.A.; Nawaz, R.A.; Liu, K.; Adekanmbi, T.; Liu, S. Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques. Remote Sens. 2022, 14, 4978. [Google Scholar] [CrossRef]
- Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sens. 2019, 11, 105. [Google Scholar] [CrossRef]
- Drummond, M.A.; Stier, M.P.; Diffendorfer, J.J.E. Historical Land Use and Land Cover for Assessing the Northern Colorado Front Range Urban Landscape. J. Maps 2019, 15, 89–93. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Islam, I.; Xu, L.; Tang, J. Future Impact of Land Use/Land Cover Changes on Ecosystem Services in the Lower Meghna River Estuary, Bangladesh. Sustainability 2020, 12, 2112. [Google Scholar] [CrossRef]
- Hufkens, K.; de Haulleville, T.; Kearsley, E.; Jacobsen, K.; Beeckman, H.; Stoffelen, P.; Vandelook, F.; Meeus, S.; Amara, M.; Van Hirtum, L.; et al. Historical Aerial Surveys Map Long-Term Changes of Forest Cover and Structure in the Central Congo Basin. Remote Sens. 2020, 12, 638. [Google Scholar] [CrossRef]
- Yao, J.; Mitran, T.; Kong, X.; Lal, R.; Chu, Q.; Shaukat, M. Landuse and Land Cover Identification and Disaggregating Socio-Economic Data with Convolutional Neural Network. Geocarto Int. 2020, 35, 1109–1123. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Firozjaei, H.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Makki, M.; Naimi, B.; Alavipanah, S.K. A Historical and Future Impact Assessment of Mining Activities on Surface Biophysical Characteristics Change: A Remote Sensing-Based Approach. Ecol. Indic. 2021, 122, 107264. [Google Scholar] [CrossRef]
- Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5496–5513. [Google Scholar] [CrossRef]
- Mäyrä, J.; Kivinen, S.; Keski-Saari, S.; Poikolainen, L.; Kumpula, T. Utilizing Historical Maps in Identification of Long-Term Land Use and Land Cover Changes. Ambio 2023. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, L. Landslide Susceptibility Analysis for the Kerch Peninsula Using Weights of Evidence Approach and GIS. Russ. J. Earth Sci. 2020, 20, ES1003. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, L. Analysis of Kerch Peninsula’s Climatic Parameters in Scope of Landslide Susceptibility. Bull. KSMTU 2018, 574, 5–11. [Google Scholar]
- Krivoguz, D.O.; Burtnik, D.N. Neural Network Modeling of Changes in the Land Cover of the Kerch Peninsula in the Context of Landslides Occurence. Nauchno-Tekhnicheskiy Vestn. Bryanskogo Gos. Univ. 2018, 1, 113–121. [Google Scholar] [CrossRef]
- Krivoguz, D.; Mal’ko, S.; Borovskaya, R.; Semenova, A. Automatic Processing of Sentinel-2 Image for Kerch Peninsula Lake Areas Extraction Using QGIS and Python. E3S Web Conf. 2020, 203, 03011. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for Interpreting and Understanding Deep Neural Networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, L.; Zhilenkov, A.; Chernyi, S. A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data. JMSE 2022, 10, 1392. [Google Scholar] [CrossRef]
- Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P. Exploring Strategies for Training Deep Neural Networks. J. Mach. Learn. Res. 2009, 10, 1–40. [Google Scholar]
- Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.-R. Explaining Deep Neural Networks and beyond: A Review of Methods and Applications. Proc. IEEE 2021, 109, 247–278. [Google Scholar] [CrossRef]
- Avdeev, B.; Vyngra, A.; Chernyi, S. Improving the Electricity Quality by Means of a Single-Phase Solid-State Transformer. Designs 2020, 4, 35. [Google Scholar] [CrossRef]
- Leo, B. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chistiakov, S. Random Forests: An Overview. Trans. KarRC RAS 2013, 12, 117–136. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support Vector Machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Medi: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bell, J. What Is Machine Learning? In Machine Learning and the City: Applications in Architecture and Urban Design; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 207–216. [Google Scholar]
- Zhou, Z.-H. Machine Learning; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- Cruickshank, J.L. The Evolution of Soviet Topographic Maps as Revealed by Their Published Supporting Documentation. Cartogr. J. 2021, 1, 1–20. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bondarenko, L.; Matveeva, E.; Zhilenkov, A.; Chernyi, S.; Zinchenko, E. Machine Learning Approach for Detection of Water Overgrowth in Azov Sea with Sentinel-2 Data. J. Mar. Sci. Eng. 2023, 11, 423. [Google Scholar] [CrossRef]
Band | Name | Wavelength Center, nm | Resolution, m |
---|---|---|---|
1 | Blue | 0.45–0.52 | 30 |
2 | Green | 0.52–0.60 | 30 |
3 | Red | 0.63–0.69 | 30 |
4 | Near Infrared | 0.76–0.90 | 30 |
5 | Shortwave Infrared 1 | 1.55–1.75 | 30 |
6 | Shortwave Infrared 2 | 2.08–2.35 | 30 |
7 | Mid Infrared | 10.40–12.50 | 60 |
Class | Description |
---|---|
Water | Areas covered by water bodies such as lakes, rivers, and reservoirs. |
Urban lands | Developed areas characterized by buildings, infrastructure, and human settlements. |
Open soils | Areas of exposed soil or bare land without significant vegetation cover. |
High vegetation | Regions with dense and thriving vegetation, such as forests, woodlands, or dense vegetation cover. |
Grass lands | Areas dominated by grasses and other herbaceous plants, often used for grazing or agricultural purposes. |
Bare lands | Land devoid of vegetation cover, including areas with minimal or no soil and exposed rock surfaces. |
Agricultural | Land utilized for agricultural activities, including crop cultivation, farming, or livestock rearing. |
Model | Hyperparameters |
---|---|
Deep Neural Network | Number of layers: 5 Number of neurons in each layer: 128, 64, 32, 16, 8 Activation function: ReLU Optimizer: Adam Learning rate: 0.001 Regularization: Dropout (0.5) |
Random Forest | Number of trees: 100 Maximum depth of trees: 20 Minimum number of samples required to split an internal node: 5 Minimum number of samples required to be at a leaf node: 2 |
Support Vector Machine (SVM) | Kernel type: RBF Kernel parameter: 0.1 Regularization parameter: 100 |
AdaBoost | Number of base models: 50 Type of base model: Decision Tree Depth of trees: 2 |
Water | Urban Lands | Open Soils | High Vegetation | Grass Lands | BARE LANDS | Agricultural | |
---|---|---|---|---|---|---|---|
Water | 1871 | 2 | 5 | 1 | 19 | 13 | 11 |
Urban lands | 2 | 1643 | 22 | 0 | 5 | 6 | 0 |
Open soils | 8 | 100 | 1442 | 0 | 6 | 5 | 0 |
High vegetation | 1 | 0 | 0 | 1758 | 2 | 2 | 2 |
Grass lands | 10 | 5 | 1 | 1 | 1860 | 10 | 2 |
Bare lands | 8 | 3 | 3 | 1 | 14 | 1715 | 23 |
Agricultural | 13 | 0 | 2 | 1 | 26 | 54 | 1902 |
Water | Urban Lands | Open Soils | High Vegetation | Grass Lands | Bare Lands | Agricultural | |
---|---|---|---|---|---|---|---|
Water | 1844 | 2 | 3 | 18 | 0 | 2 | 53 |
Urban lands | 0 | 1581 | 47 | 8 | 0 | 22 | 20 |
Open soils | 7 | 69 | 1391 | 68 | 2 | 21 | 3 |
High vegetation | 9 | 17 | 27 | 1706 | 2 | 3 | 1 |
Grass lands | 0 | 6 | 6 | 6 | 1854 | 16 | 1 |
Bare lands | 2 | 3 | 17 | 17 | 14 | 1701 | 13 |
Agricultural | 50 | 10 | 0 | 1 | 1 | 14 | 1922 |
Water | Urban Lands | Open Soils | High Vegetation | Grass Lands | Bare Lands | Agricultural | |
---|---|---|---|---|---|---|---|
Water | 1910 | 0 | 0 | 1 | 0 | 3 | 8 |
Urban lands | 18 | 824 | 57 | 28 | 95 | 107 | 549 |
Open soils | 6 | 156 | 650 | 48 | 116 | 391 | 194 |
High vegetation | 1 | 25 | 27 | 1583 | 0 | 36 | 93 |
Grass lands | 0 | 46 | 38 | 21 | 1597 | 68 | 79 |
Bare lands | 7 | 137 | 142 | 20 | 157 | 1179 | 125 |
Agricultural | 10 | 85 | 52 | 19 | 123 | 57 | 1662 |
Water | Urban Lands | Open Soils | High Vegetation | Grass Lands | Bare Lands | Agricultural | |
---|---|---|---|---|---|---|---|
Water | 1123 | 68 | 140 | 191 | 223 | 173 | 4 |
Urban lands | 140 | 831 | 23 | 107 | 318 | 258 | 1 |
Open soils | 84 | 9 | 827 | 214 | 135 | 251 | 46 |
High vegetation | 22 | 2 | 122 | 1303 | 52 | 242 | 22 |
Grass lands | 129 | 70 | 171 | 212 | 966 | 523 | 18 |
Bare lands | 9 | 39 | 27 | 125 | 150 | 1414 | 3 |
Agricultural | 36 | 10 | 106 | 225 | 97 | 46 | 1478 |
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
SVM | 0.821 | 0.763 | 0.556 | 0.643 |
DNN | 0.962 | 0.939 | 0.904 | 0.921 |
AdaBoost | 0.655 | 0.710 | 0.564 | 0.628 |
Random Forest | 0.814 | 0.725 | 0.751 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivoguz, D.; Chernyi, S.G.; Zinchenko, E.; Silkin, A.; Zinchenko, A. Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models. Data 2023, 8, 138. https://doi.org/10.3390/data8090138
Krivoguz D, Chernyi SG, Zinchenko E, Silkin A, Zinchenko A. Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models. Data. 2023; 8(9):138. https://doi.org/10.3390/data8090138
Chicago/Turabian StyleKrivoguz, Denis, Sergei G. Chernyi, Elena Zinchenko, Artem Silkin, and Anton Zinchenko. 2023. "Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models" Data 8, no. 9: 138. https://doi.org/10.3390/data8090138
APA StyleKrivoguz, D., Chernyi, S. G., Zinchenko, E., Silkin, A., & Zinchenko, A. (2023). Using Landsat-5 for Accurate Historical LULC Classification: A Comparison of Machine Learning Models. Data, 8(9), 138. https://doi.org/10.3390/data8090138