ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network
Abstract
:1. Introduction
2. Methods
AEB Algorithm Simulation Test Process
3. Related Work
3.1. Baseline Neural Networks
3.1.1. Building BP Neural Networks
3.1.2. Improved BP Neural Networks
3.2. GA-BP Neural Network
Genetic Algorithm Combined with the Roulette Selection Process
3.3. Sample Data Preprocessing
4. Results
Comparison of Training Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, W.-Z.; Su, Y.-M.; Wang, L. A Review of Research on Evaluation of Automated Driving Tests. Syst. Sci. Math. 2022, 42, 495–508. (In Chinese) [Google Scholar]
- Shaout, A.; Colella, D.; Awad, S. Advanced driver assistance systems-past, present and future. In Proceedings of the 2011 Seventh International Computer Engineering Conference (ICENCO’2011), Cairo, Egypt, 27–28 December 2011; pp. 72–82. [Google Scholar]
- Ming, C.-L.; Rong, W.-S. Overview of Vehicle AEB. Mod. Electron. Technol. 2021, 5, 14–16. [Google Scholar]
- El Mostadi, M.; Waeselynck, H.; Gabriel, J.M. Virtual Test Scenarios for ADAS: Distance to Real Scenarios Matters! In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 4–9 June 2022; pp. 836–841. [Google Scholar]
- Wu, Z.; Yang, J.; Huang, L. Study on the collision avoidance strategy at unsignalized intersection based on PreScan simulation. Procedia-Soc. Behav. Sci. 2013, 96, 1315–1321. [Google Scholar] [CrossRef]
- Guo, L.-B.; Mei, Z.-Q.; He, Y. Simulation of Intersection Collision Avoidance Control System Based on PreScan Software. Mech. Electron. 2014, 2, 22–26. (In Chinese) [Google Scholar]
- Zhang, Q.; Chen, D.; Li, Y.; Li, K. Research on performance test method of lane departure warning system with PreScan. In Proceedings of SAE-China Congress; Springer: Berlin/Heidelberg, Germany, 2014; pp. 445–453. [Google Scholar]
- Yang, W.; Liu, J.; Zhou, K.; Zhang, Z.; Qu, X. An automatic emergency braking model considering driver’s intention recognition of the front vehicle. J. Adv. Transp. 2020, 2020, 5172305. [Google Scholar] [CrossRef]
- Kim, B.; Kwon, B.; Lee, S. A study on evaluation method of AEB pedestrian test. J. -Auto-Veh. Saf. Assoc. 2018, 10, 25–32. [Google Scholar]
- Tideman, M.; Van Noort, M. A simulation tool suite for developing connected vehicle systems. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Sofitel Broadbeach, Gold Coast, Australia, 23–26 June 2013; pp. 713–718. [Google Scholar]
- Gao, Y.; Xu, Z.; Zhao, X.; Wang, G.; Yuan, Q. Hardware-in-the-loop simulation platform for autonomous vehicle AEB prototyping and validation. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20 September 2020; pp. 1–6. [Google Scholar]
- Kim, J.; Han, H.; Kim, S.; Choi, J.; Park, J.; Park, H. A study on the AEB operation simulation using prescan based on the vehicle test. Trans. Korean Soc. Automot. Eng. 2020, 30, 249–257. [Google Scholar] [CrossRef]
- Poggio, T.; Girosi, F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247, 978–982. [Google Scholar] [CrossRef]
- Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
- Kehtarnavaz, N.; Groswold, N.; Miller, K.; Lascoe, P. A transportable neural-network approach to autonomous vehicle following. IEEE Trans. Veh. Technol. 1998, 47, 694–702. [Google Scholar] [CrossRef]
- Wang, L.; Zhan, Z.; Yang, X.; Wang, Q.; Zhang, Y.; Zheng, L.; Guo, G. Development of BP neural network PID controller and its application on autonomous emergency braking system. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1711–1716. [Google Scholar]
- Han, J.; Heo, O.; Park, M.; Kee, S.; Sunwoo, M. Vehicle distance estimation using a mono-camera for FCW/AEB systems. Int. J. Automot. Technol. 2016, 17, 483–491. [Google Scholar] [CrossRef]
- Suliman, A.; Zhang, Y. A review on back-propagation neural networks in the application of remote sensing image classification. J. Earth Sci. Eng. 2015, 5, 52–65. [Google Scholar]
- Zhao, Z.; Xin, H.; Ren, Y.; Guo, X. Application and comparison of BP neural network algorithm in MATLAB. In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation (Vol.1), Changsha, China, 13–14 March 2010; pp. 590–593. [Google Scholar]
- Ji, P.-F.; Meng, W.-N.; Yang, B.-F.; Wang, D.-D. Research on Agricultural Machinery Data Prediction Based on Improved BP Neural Networks. China Agrochem. J. 2020, 41, 200–205. (In Chinese) [Google Scholar]
- Chen, J.-Y.; Chen, L.; Meng, H.-L.; Xiong, L. A neural network-based evaluation model for vehicle traffic coordination. J. Tongji Univ. (Nat. Sci. Ed.) 2021, 49, 135–141. (In Chinese) [Google Scholar]
- Huang, Y.; Luo, W.; Lan, H. Adaptive pre-aim control of driverless vehicle path tracking based on a SSA-BP neural network. World Electr. Veh. J. 2022, 13, 55. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Lu, Y.-P.; Zhang, Y.-H.; Wang, C. Optimization of BP neural network car-following model. Chin. J. Saf. Sci. 2016, 26, 103–108. (In Chinese) [Google Scholar]
- Wang, T.-F.; Liu, X.-Y. Research on Vehicle Following Model Based on BP Neural Networks. South. Agric. Mach. 2023, 54, 20–23. (In Chinese) [Google Scholar]
- Zhu, L.; Zhang, S.; Xu, S.; Zhao, H.; Chen, S.; Wei, D.; Liu, J. Classification of UAV-to-ground targets based on micro-Doppler fractal features using IEEMD and GA-BP neural network. IEEE Sens. J. 2019, 20, 348–358. [Google Scholar] [CrossRef]
- Qian, K.; Hou, Z.; Sun, D. Sound quality estimation of electric vehicles based on GA-BP artificial neural networks. Appl. Sci. 2019, 10, 5567. [Google Scholar] [CrossRef]
- Liao, M.; Liang, S.; Luo, R.; Chen, Y. The moving load identification method on asphalt roads based on the BP neural network and FBG sensor monitoring. Constr. Build. Mater. 2023, 378, 131216. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, Z.; Hua, L.; Pan, J.; Xiao, Y. Prediction of cold start emissions for hybrid electric vehicles based on genetic algorithms and neural networks. J. Clean. Prod. 2023, 420, 131216. [Google Scholar] [CrossRef]
- Akossou, A.Y.J.; Palm, R. Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput. 2013, 20, 84–93. [Google Scholar]
- Sun, Y.; He, J.-B.; Gao, Y.-L. Application of APSO-BP Neural Network Algorithm in Stock Price Prediction. In Proceedings of the 14th International Conference, ICSI 2023, Proceedings, Part II, Shenzhen, China, 14–18 July 2023; pp. 478–489. [Google Scholar]
- Tang, X.; Shi, L.; Wang, B.; Cheng, A. Weight adaptive path tracking control for autonomous vehicles based on PSO-BP neural network. Sensors 2022, 23, 412. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cui, J.; Shu, Y.; Wang, Y.; Chen, R.; Wang, L. Multi-level health degree analysis of vehicle transmission system based on PSO-BP neural network data fusion. Eksploat. Niezawodn. 2023, 25, 4. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, L.; Qian, L.; Cheng, B.; Hou, W.; Zhuang, Y. Adaptive Leakage Protection for Low-Voltage Distribution Systems Based on SSA-BP Neural Network. Appl. Sci. 2023, 13, 9273. [Google Scholar]
- Liu, Z.; Yu, H.; Jin, W. Sine-SSA-BP Ship Trajectory Prediction Based on Chaotic Mapping Improved Sparrow Search Algorithm. Sensors 2023, 23, 704. [Google Scholar]
- Khatun, M.; Glaß, M.; Jung, R. Scenario-based extended HARA incorporating functional safety & SOTIF for autonomous driving. In Proceedings of the ESREL-30th European Safety and Reliability Conference, Venice, Italy, 1–5 November 2020. [Google Scholar]
Long-Range Radar Tis1 Parameters | Short Range Radar Tis2 Parameters | |
---|---|---|
FoV shape | pyramid type | pyramid type |
Number of beams | Single beam | Single beam |
Scanning frequency | 25 Hz | 25 Hz |
Detection range | 160 m | 30 m |
Transverse FOV opening angle | 9 deg | 75 deg |
Number of detected targets | 32 | 32 |
Serial Number | Index | Value | Symbol | Dimension |
---|---|---|---|---|
1 | Minimum self-driving speed | 46.24 | km/h | |
2 | Maximum self-driving speed | 97.51 | km/h | |
3 | The earliest time point of alarm | 4.22 | s | |
4 | The latest time point of alarm | 6.91 | s | |
5 | The earliest time point of 40% braking force | 4.97 | s | |
6 | The latest time point of 40% braking force | 7.84 | s | |
7 | The earliest time point of full-force braking | 5.03 | s | |
8 | The latest time point of full-force braking | 8.37 | s | |
9 | Maximum distance after actual braking | 2.981 | m | |
10 | Minimum distance after actual braking | 0.351 | m | |
11 | Average vehicle distance of vehicle after actual braking | 1.712 | m | |
12 | Maximum distance after predicted braking | 2.901 | m | |
13 | Minimum distance after predicted braking | 0.391 | m | |
14 | Average vehicle distance of vehicle after predicted braking | 1.718 | m |
Mean Squared Error | Root Mean Square Error | Mean Absolute Error | Coefficients of Determination (R2) | |
---|---|---|---|---|
BP | ||||
GA-BP | ||||
Optimization volume | 25.83% | 13.89% | 17.13% | 0.4% |
Mean Squared Error | Root Mean Square Error | Mean Absolute Error | Coefficients of Determination (R2) | |
---|---|---|---|---|
APSO-BP | ||||
PSO-BP | ||||
SSA-BP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Chen, L.; Huang, Y. ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network. Data 2024, 9, 11. https://doi.org/10.3390/data9010011
Zhao S, Chen L, Huang Y. ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network. Data. 2024; 9(1):11. https://doi.org/10.3390/data9010011
Chicago/Turabian StyleZhao, Songyan, Lingshan Chen, and Yongchao Huang. 2024. "ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network" Data 9, no. 1: 11. https://doi.org/10.3390/data9010011
APA StyleZhao, S., Chen, L., & Huang, Y. (2024). ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network. Data, 9(1), 11. https://doi.org/10.3390/data9010011