Curated Polyoxometalate Formula Dataset
Abstract
:1. Summary
2. Data Description
3. Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
POM | Polyoxometalate |
DOI | Digital Object Identifier |
CSV | Comma-separated value |
JSON | JavaScript Object Notation |
References
- Ongari, D.; Yakutovich, A.V.; Talirz, L.; Smit, B. Building a consistent and reproducible database for adsorption evaluation in covalent–organic frameworks. ACS Cent. Sci. 2019, 5, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, P.Z.; Li, A.; Wiggin, S.B.; Tao, A.; Maloney, A.G.; Wood, P.A.; Ward, S.C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database subset: A collection of metal–organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618–2625. [Google Scholar] [CrossRef]
- Yang, S.; Lach-Hab, M.; Vaisman, I.I.; Blaisten-Barojas, E.; Li, X.; Karen, V.L. Framework-type determination for zeolite structures in the inorganic crystal structure database. J. Phys. Chem. Ref. Data 2010, 39, 033102. [Google Scholar] [CrossRef]
- Zheng, C.; Li, Y.; Yu, J. Database of open-framework aluminophosphate structures. Sci. Data 2020, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Kancharlapalli, S.; Snurr, R.Q. High-throughput screening of the CoRE-MOF-2019 database for CO2 capture from wet flue gas: A multi-scale modeling strategy. ACS Appl. Mater. Interfaces 2023, 15, 28084–28092. [Google Scholar] [CrossRef]
- Liu, R.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Rompel, A. Interweaving disciplines to advance chemistry: Applying polyoxometalates in biology. Inorg. Chem. 2021, 60, 6109–6114. [Google Scholar] [CrossRef] [PubMed]
- Barba-Bon, A.; Gumerova, N.I.; Tanuhadi, E.; Ashjari, M.; Chen, Y.; Rompel, A.; Nau, W.M. All-Inorganic Polyoxometalates Act as Superchaotropic Membrane Carriers. Adv. Mater. 2024, 36, 2309219. [Google Scholar] [CrossRef]
- Bijelic, A.; Rompel, A. Ten good reasons for the use of the tellurium-centered Anderson–Evans polyoxotungstate in protein crystallography. Acc. Chem. Res. 2017, 50, 1441–1448. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. ChemComm 2018, 54, 1153–1169. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef] [PubMed]
- Kondinski, A. Metal–metal bonds in polyoxometalate chemistry. Nanoscale 2021, 13, 13574–13592. [Google Scholar] [CrossRef] [PubMed]
- Kondinski, A.; Banerjee, A.; Mal, S.S. Hervé- and Krebs-Type Magnetic Polyoxometalate Dimers. Magnetochemistry 2022, 8, 96. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Rompel, A. Speciation atlas of polyoxometalates in aqueous solutions. Sci. Adv. 2023, 9, eadi0814. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 49, 7568–7601. [Google Scholar] [CrossRef]
- Surman, A.J.; Robbins, P.J.; Ujma, J.; Zheng, Q.; Barran, P.E.; Cronin, L. Sizing and discovery of nanosized polyoxometalate clusters by mass spectrometry. J. Am. Chem. Soc. 2016, 138, 3824–3830. [Google Scholar] [CrossRef]
- Kondinski, A.; Rasmussen, M.; Mangelsen, S.; Pienack, N.; Simjanoski, V.; Näther, C.; Stares, D.L.; Schalley, C.A.; Bensch, W. Composition-driven archetype dynamics in polyoxovanadates. Chem. Sci. 2022, 13, 6397–6412. [Google Scholar] [CrossRef]
- Vilà-Nadal, L. POMzites: A roadmap for inverse design in metal oxide chemistry. Int. J. Quantum Chem. 2021, 121, e26493. [Google Scholar] [CrossRef]
- Soria-Carrera, H.; Atrián-Blasco, E.; de la Fuente, J.M.; Mitchell, S.G.; Martín-Rapún, R. Polyoxometalate–polypeptide nanoassemblies as peroxidase surrogates with antibiofilm properties. Nanoscale 2022, 14, 5999–6006. [Google Scholar] [CrossRef]
- Cameron, J.M.; Guillemot, G.; Galambos, T.; Amin, S.S.; Hampson, E.; Haidaraly, K.M.; Newton, G.N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328. [Google Scholar] [CrossRef]
- Pope, M.T.; Jeannin, Y.; Fournier, M. Heteropoly and Isopoly Oxometalates; Springer: Berlin/Heidelberg, Germany, 1983; Volume 8. [Google Scholar]
- Krivovichev, S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Dance, I.G.; Day, P.; Ibers, J.A.; Kunitake, T.; Meyer, T.J.; Mingos, D.M.P.; Roesky, H.W.; Sauvage, J.P.; Simon, A.; et al. Bonding and Charge Distribution in Polyoxometalates: A Bond Valence Approach; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC international chemical identifier. J. Cheminform. 2015, 7, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, S.W. SciFinder. J. Med. Libr. Assoc. 2018, 106, 588. [Google Scholar] [CrossRef]
- Paskin, N. Digital object identifier (DOI®) system. Encycl. Libr. Inf. Sci. 2010, 3, 1586–1592. [Google Scholar] [CrossRef]
- Kato, C.; Nishihara, S.; Tsunashima, R.; Tatewaki, Y.; Okada, S.; Ren, X.M.; Inoue, K.; Long, D.L.; Cronin, L. Quick and selective synthesis of Li6[α-P2W18O62]·28H2O soluble in various organic solvents. Dalton Trans. 2013, 42, 11363–11366. [Google Scholar] [CrossRef]
- Müller, A.; Beckmann, E.; Bögge, H.; Schmidtmann, M.; Dress, A. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking. Angew. Chem. Int. Ed. 2002, 41, 1162–1167. [Google Scholar] [CrossRef]
- Fang, X.; Kögerler, P.; Furukawa, Y.; Speldrich, M.; Luban, M. Molecular growth of a core–shell polyoxometalate. Angew. Chem. Int. Ed. 2011, 50, 5212–5216. [Google Scholar] [CrossRef]
- Ling, J.; Qiu, J.; Burns, P.C. Uranyl peroxide oxalate cage and core–shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 2012, 51, 2403–2408. [Google Scholar] [CrossRef]
- Wu, Y.L.; Li, X.X.; Qi, Y.J.; Yu, H.; Jin, L.; Zheng, S.T. {Nb288O768(OH)48(CO3)12}: A Macromolecular Polyoxometalate with Close to 300 Niobium Atoms. Angew. Chem. Int. Ed. 2018, 57, 8572–8576. [Google Scholar] [CrossRef]
- Wang, H.; Hamanaka, S.; Nishimoto, Y.; Irle, S.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: Polyoxometalates as electron sponges. J. Am. Chem. Soc. 2012, 134, 4918–4924. [Google Scholar] [CrossRef]
- Lin, C.C.; Hsu, C.T.; Liu, W.; Huang, S.C.; Lin, M.H.; Kortz, U.; Mougharbel, A.S.; Chen, T.Y.; Hu, C.W.; Lee, J.F.; et al. In operando X-ray studies of high-performance lithium-ion storage in Keplerate-type polyoxometalate anodes. ACS Appl. Mater. Interfaces 2020, 12, 40296–40309. [Google Scholar] [CrossRef] [PubMed]
- Kondinski, A.; Rutkevych, P.; Pascazio, L.; Tran, D.; Farazi, F.; Ganguly, S.; Kraft, M. Knowledge Graph Representation of Zeolitic Crystalline Materials. Digit. Discov. 2024. accepted. [Google Scholar] [CrossRef]
- Tran, D.N.; Rihm, S.D.; Kondinski, A.; Pascazio, L.; Saluz, F.; Mosbach, S.; Akroyd, J.; Kraft, M. Natural Language Access Point to Digital Metal-Organic Polyhedra Chemistry in the World Avatar; Technical Report 327, c4e-Preprint Series; University of Cambridge: Cambridge, UK, 2024. [Google Scholar]
- Kondinski, A.; Mosbach, S.; Akroyd, J.; Breeson, A.; Tan, Y.R.; Rihm, S.; Bai, J.; Kraft, M. Hacking Decarbonization with a Community-Operated CreatorSpace. Chem 2024, 10, 1071–1083. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondinski, A.; Gumerova, N.; Rompel, A. Curated Polyoxometalate Formula Dataset. Data 2024, 9, 124. https://doi.org/10.3390/data9110124
Kondinski A, Gumerova N, Rompel A. Curated Polyoxometalate Formula Dataset. Data. 2024; 9(11):124. https://doi.org/10.3390/data9110124
Chicago/Turabian StyleKondinski, Aleksandar, Nadiia Gumerova, and Annette Rompel. 2024. "Curated Polyoxometalate Formula Dataset" Data 9, no. 11: 124. https://doi.org/10.3390/data9110124
APA StyleKondinski, A., Gumerova, N., & Rompel, A. (2024). Curated Polyoxometalate Formula Dataset. Data, 9(11), 124. https://doi.org/10.3390/data9110124