Genome-Scale DNA Methylome and Transcriptome Profiles of Prostate Cancer Recurrence After Prostatectomy
Abstract
:1. Background and Summary
2. Data Description
3. Results
3.1. DNA Methylome Data Analysis, Assessments and Features
3.2. RNA-Seq Data Analysis, Assessments and Features
3.3. Technical Reproducibility of DNA Methylome and Transcriptome Data
4. Methods
4.1. Patient Recruitment and Tumour Sample Collection
4.2. Clinical Data Collection and Description of Clinical Features
4.3. DNA Extraction and Genome-Wide Methylation Profiling
4.4. DNA Methylome (MethylationEPIC v2.0) Data Analysis
4.5. RNA Extraction and RNA Sequencing
4.6. RNA-Sequencing and Data Analysis
5. User Notes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Kupelian, P.A.; Buchsbaum, J.C.; Elshaikh, M.; Reddy, C.A.; Zippe, C.; Klein, E.A. Factors affecting recurrence rates after prostatectomy or radiotherapy in localized prostate carcinoma patients with biopsy Gleason score 8 or above. Cancer 2002, 95, 2302–2307. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.E.; Yousefi, K.; Davicioni, E.; Ghadessi, M.; Johnson, M.H.; Sundi, D.; Tosoian, J.J.; Han, M.; Humphreys, E.B.; Partin, A.W.; et al. Utility of Risk Models in Decision Making After Radical Prostatectomy: Lessons from a Natural History Cohort of Intermediate- and High-Risk Men. Eur. Urol. 2016, 69, 496–504. [Google Scholar] [CrossRef]
- Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D’Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [Google Scholar]
- Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; van der Kwast, T.; Mason, M.; Matveev, V.; Wiegel, T.; Zattoni, F. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 2014, 65, 467–479. [Google Scholar] [CrossRef]
- Shore, N.D.; Moul, J.W.; Pienta, K.J.; Czernin, J.; King, M.T.; Freedland, S.J. Biochemical recurrence in patients with prostate cancer after primary definitive therapy: Treatment based on risk stratification. Prostate Cancer Prostatic Dis. 2024, 27, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; Van Den Bergh, R.C.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: A systematic review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Preisser, F.; Abrams-Pompe, R.S.; Stelwagen, P.J.; Böhmer, D.; Zattoni, F.; Magli, A.; Rivas, J.G.; Dilme, R.V.; Sepulcri, M.; Eguibar, A. European association of urology biochemical recurrence risk classification as a decision tool for salvage radiotherapy—A multicenter study. Eur. Urol. 2024, 85, 164–170. [Google Scholar] [CrossRef]
- Falagario, U.G.; Abbadi, A.; Remmers, S.; Björnebo, L.; Bogdanovic, D.; Martini, A.; Valdman, A.; Carrieri, G.; Menon, M.; Akre, O. Biochemical recurrence and risk of mortality following radiotherapy or radical prostatectomy. JAMA Netw. Open 2023, 6, e2332900. [Google Scholar] [CrossRef]
- Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.-J.; Yousif, F.; Lin, X.; Masella, A.P.; et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017, 541, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Ezegbogu, M.; Wilkinson, E.; Reid, G.; Rodger, E.J.; Brockway, B.; Russell-Camp, T.; Kumar, R.; Chatterjee, A. Cell-free DNA methylation in the clinical management of lung cancer. Trends Mol. Med. 2024, 30, 499–515. [Google Scholar] [CrossRef]
- Smith, J.; Barnett, E.; Rodger, E.J.; Chatterjee, A.; Subramaniam, R.M. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin. 2023, 18, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Rodger, E.J.; Gimenez, G.; Ajithkumar, P.; Stockwell, P.A.; Almomani, S.; Bowden, S.A.; Leichter, A.L.; Ahn, A.; Pattison, S.; McCall, J.L.; et al. An epigenetic signature of advanced colorectal cancer metastasis. iScience 2023, 26, 106986. [Google Scholar] [CrossRef]
- Banerjee, R.; Smith, J.; Eccles, M.R.; Weeks, R.J.; Chatterjee, A. Epigenetic basis and targeting of cancer metastasis. Trends Cancer 2022, 8, 226–241. [Google Scholar] [CrossRef]
- FitzGerald, L.M.; Jung, C.-h.; Wong, E.M.; Joo, J.E.; Bassett, J.K.; Dowty, J.G.; Wang, X.; Dai, J.Y.; Stanford, J.L.; O’Callaghan, N.; et al. Detection of differentially methylated CpGs between tumour and adjacent benign cells in diagnostic prostate cancer samples. Sci. Rep. 2024, 14, 17877. [Google Scholar] [CrossRef] [PubMed]
- Savio, A.J.; Kamdar, S.; Jeyapala, R.; Olkhov-Mitsel, E.; Cuizon, C.; Finelli, A.; Zlotta, A.R.; Toi, A.; Fleshner, N.E.; van der Kwast, T.; et al. Methylation Markers in Prostate Biopsies Are Prognosticators for Late Biochemical Recurrence and Therapy after Surgery in Prostate Cancer Patients. J. Mol. Diagn. 2020, 22, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.G.; Chen, W.S.; Li, H.; Foye, A.; Zhang, M.; Sjöström, M.; Aggarwal, R.; Playdle, D.; Liao, A.; Alumkal, J.J. The DNA methylation landscape of advanced prostate cancer. Nat. Genet. 2020, 52, 778–789. [Google Scholar] [CrossRef]
- Ramesh, A.; Chatterjee, A.; Subramaniam, R.M. Neuroendocrine Neoplasms: Epidemiology, Diagnosis, and Management. PET Clin. 2023, 18, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Barnett, E.; Smith, J.; Wilkinson, E.; Subramaniam, R.M.; Zarrabi, A.; Rodger, E.J.; Chatterjee, A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. Int. Rev. Cell Mol. Biol. 2024, 383, 41–66. [Google Scholar] [CrossRef]
- Peters, T.J.; Meyer, B.; Ryan, L.; Achinger-Kawecka, J.; Song, J.; Campbell, E.M.; Qu, W.; Nair, S.; Loi-Luu, P.; Stricker, P.; et al. Characterisation and reproducibility of the HumanMethylationEPIC v2.0 BeadChip for DNA methylation profiling. BMC Genom. 2024, 25, 251. [Google Scholar] [CrossRef]
- Chatterjee, A.; Stockwell, P.A.; Rodger, E.J.; Morison, I.M. Genome-scale DNA methylome and transcriptome profiling of human neutrophils. Sci. Data 2016, 3, 160019. [Google Scholar] [CrossRef]
- Chatterjee, A.; Stockwell, P.A.; Rodger, E.J.; Duncan, E.J.; Parry, M.F.; Weeks, R.J.; Morison, I.M. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation. Sci. Rep. 2015, 5, 17328. [Google Scholar] [CrossRef] [PubMed]
- Stadler, M.B.; Murr, R.; Burger, L.; Ivanek, R.; Lienert, F.; Scholer, A.; van Nimwegen, E.; Wirbelauer, C.; Oakeley, E.J.; Gaidatzis, D.; et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011, 480, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.R.; Bleich, R.M.; Arthur, J.C. Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annu. Rev. Med. 2021, 72, 243–261. [Google Scholar] [CrossRef]
- Strong, M.J.; Xu, G.; Morici, L.; Splinter Bon-Durant, S.; Baddoo, M.; Lin, Z.; Fewell, C.; Taylor, C.M.; Flemington, E.K. Microbial contamination in next generation sequencing: Implications for sequence-based analysis of clinical samples. PLoS Pathog. 2014, 10, e1004437. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.M.; Crabtree, J.; Mattick, J.S.; Anderson, K.E.; Dunning Hotopp, J.C. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: Definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Pound, C.R.; Partin, A.W.; Eisenberger, M.A.; Chan, D.W.; Pearson, J.D.; Walsh, P.C. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999, 281, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.G.; Blute, M.L.; Bergstralh, E.J.; Slezak, J.M.; Zincke, H. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2001; pp. 576–581. [Google Scholar]
- Budäus, L.; Isbarn, H.; Eichelberg, C.; Lughezzani, G.; Sun, M.; Perrotte, P.; Chun, F.K.H.; Salomon, G.; Steuber, T.; Köllermann, J. Biochemical recurrence after radical prostatectomy: Multiplicative interaction between surgical margin status and pathological stage. J. Urol. 2010, 184, 1341–1346. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Carroll, P.R.; Klotz, L. Active surveillance for prostate cancer: Progress and promise. J. Clin. Oncol. 2011, 29, 3669–3676. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Cowan, J.E.; Hilton, J.F.; Reese, A.C.; Zaid, H.B.; Porten, S.P.; Shinohara, K.; Meng, M.V.; Greene, K.L.; Carroll, P.R. Outcomes of active surveillance for men with intermediate-risk prostate cancer. J. Clin. Oncol. 2011, 29, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ludgate, J.L.; Wright, J.; Stockwell, P.A.; Morison, I.M.; Eccles, M.R.; Chatterjee, A. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA. BMC Med. Genom. 2017, 10, 54. [Google Scholar] [CrossRef]
- Maksimovic, J.; Phipson, B.; Oshlack, A. A cross-package Bioconductor workflow for analysing methylation array data. F1000Research 2016, 5, 1281. [Google Scholar] [CrossRef]
- Noguera-Castells, A.; García-Prieto, C.A.; Álvarez-Errico, D.; Esteller, M. Validation of the new EPIC DNA methylation microarray (900K EPIC v2) for high-throughput profiling of the human DNA methylome. Epigenetics 2023, 18, 2185742. [Google Scholar] [CrossRef]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef]
- Muller, F.; Scherer, M.; Assenov, Y.; Lutsik, P.; Walter, J.; Lengauer, T.; Bock, C. RnBeads 2.0: Comprehensive analysis of DNA methylation data. Genome Biol. 2019, 20, 55. [Google Scholar] [CrossRef]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016, 17, 208. [Google Scholar] [CrossRef]
- Sala, C.; Di Lena, P.; Fernandes Durso, D.; Prodi, A.; Castellani, G.; Nardini, C. Evaluation of pre-processing on the meta-analysis of DNA methylation data from the Illumina HumanMethylation450 BeadChip platform. PLoS ONE 2020, 15, e0229763. [Google Scholar] [CrossRef] [PubMed]
- Welsh, H.; Batalha, C.; Li, W.; Mpye, K.L.; Souza-Pinto, N.C.; Naslavsky, M.S.; Parra, E.J. A systematic evaluation of normalization methods and probe replicability using infinium EPIC methylation data. Clin. Epigenetics 2023, 15, 41. [Google Scholar] [CrossRef]
- Fortin, J.P.; Labbe, A.; Lemire, M.; Zanke, B.W.; Hudson, T.J.; Fertig, E.J.; Greenwood, C.M.; Hansen, K.D. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014, 15, 503. [Google Scholar] [CrossRef] [PubMed]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 7, 1338. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440. [Google Scholar] [CrossRef]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef]
- Gimenez, G.; Stockwell, P.A.; Rodger, E.J.; Chatterjee, A. Strategy for RNA-Seq Experimental Design and Data Analysis. Methods Mol. Biol. 2023, 2588, 249–278. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ahn, A.; Rodger, E.J.; Stockwell, P.A.; Eccles, M.R. A Guide for Designing and Analyzing RNA-Seq Data. Methods Mol. Biol. 2018, 1783, 35–80. [Google Scholar] [CrossRef]
- Leichter, A.L.; Purcell, R.V.; Sullivan, M.J.; Eccles, M.R.; Chatterjee, A. Multi-platform microRNA profiling of hepatoblastoma patients using formalin fixed paraffin embedded archival samples. GigaScience 2015, 4, 54. [Google Scholar] [CrossRef]
- Chatterjee, A.; Leichter, A.L.; Fan, V.; Tsai, P.; Purcell, R.V.; Sullivan, M.J.; Eccles, M.R. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci. Rep. 2015, 5, 10438. [Google Scholar] [CrossRef] [PubMed]
- Sathianathen, N.J.; Kuntz, K.M.; Alarid-Escudero, F.; Lawrentschuk, N.L.; Bolton, D.M.; Murphy, D.G.; Weight, C.J.; Konety, B.R. Incorporating biomarkers into the primary prostate biopsy setting: A cost-effectiveness analysis. J. Urol. 2018, 200, 1215–1220. [Google Scholar] [CrossRef]
- Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A. The molecular taxonomy of primary prostate cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef]
- Chatterjee, A.; Rodger, E.J.; Eccles, M.R. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol. 2018, 51, 149–159. [Google Scholar] [CrossRef]
- Banerjee, R.; Ajithkumar, P.; Keestra, N.; Smith, J.; Gimenez, G.; Rodger, E.J.; Eccles, M.R.; Antony, J.; Weeks, R.J.; Chatterjee, A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers 2024, 16, 898. [Google Scholar] [CrossRef]
- Smith, J.; Banerjee, R.; Weeks, R.J.; Chatterjee, A. Editing of DNA Methylation Patterns Using CRISPR-Based Tools. Methods Mol. Biol. 2022, 2458, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Urbano, A.; Smith, J.; Weeks, R.J.; Chatterjee, A. Gene-Specific Targeting of DNA Methylation in the Mammalian Genome. Cancers 2019, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Nunez, J.K.; Chen, J.; Pommier, G.C.; Cogan, J.Z.; Replogle, J.M.; Adriaens, C.; Ramadoss, G.N.; Shi, Q.; Hung, K.L.; Samelson, A.J.; et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 2021, 184, 2503–2519.e17. [Google Scholar] [CrossRef] [PubMed]
- Arreaza, G.; Qiu, P.; Pang, L.; Albright, A.; Hong, L.Z.; Marton, M.J.; Levitan, D. Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. Int. J. Mol. Sci. 2016, 17, 1579. [Google Scholar] [CrossRef]
- Nikitina, A.S.; Sharova, E.I.; Danilenko, S.A.; Butusova, T.B.; Vasiliev, A.O.; Govorov, A.V.; Prilepskaya, E.A.; Pushkar, D.Y.; Kostryukova, E.S. Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients. Oncotarget 2017, 8, 32990–33001. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.; Xu, J.; Osunkoya, A.O.; Sannigrahi, S.; Johnson, B.A.; Zhou, W.; Gillespie, T.; Park, J.Y.; Nam, R.K.; Sugar, L.; et al. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence. Cancer Res. 2014, 74, 3228–3237. [Google Scholar] [CrossRef]
- Rade, M.; Kreuz, M.; Borkowetz, A.; Sommer, U.; Blumert, C.; Füssel, S.; Bertram, C.; Löffler, D.; Otto, D.J.; Wöller, L.A.; et al. A reliable transcriptomic risk-score applicable to formalin-fixed paraffin-embedded biopsies improves outcome prediction in localized prostate cancer. Mol. Med. 2024, 30, 19. [Google Scholar] [CrossRef] [PubMed]
Clinical Details | Accession Number | |||
---|---|---|---|---|
Patient ID | Age | BCR status | Methylation EPICv2.0 | RNA-Seq |
BCR_001 | 59 | Persistence | GSM8531341 | GSM8540645 |
BCR_002 | 73 | BCR | NA | GSM8540646 |
BCR_003 | 73 | No BCR | NA | GSM8540647 |
BCR_004 | 69 | BCR | NA | GSM8540648 |
BCR_005 | 67 | BCR | NA | GSM8540649 |
BCR_006 | 65 | BCR | NA | GSM8540650 |
BCR_007 | 60 | BCR | GSM8531342 | GSM8540651 |
BCR_008 | 47 | BCR | NA | GSM8540652 |
BCR_009 | 71 | No BCR | GSM8531343 | GSM8540653 |
BCR_010_Replicate 1 | 69 | No BCR | GSM8531344 | GSM8540654 |
BCR_010_Replicate 2 | 69 | No BCR | GSM8531345 | - |
BCR_011 | 68 | No BCR | GSM8531346 | GSM8540655 |
BCR_012 | 65 | No BCR | NA | GSM8540656 |
BCR_013_Replicate 1 | 52 | BCR | GSM8531347 | GSM8540657 |
BCR_013_Replicate 2 | 52 | BCR | GSM8531348 | - |
BCR_014_Replicate 1 | 71 | No BCR | GSM8531349 | GSM8540658 |
BCR_014_Replicate 2 | 71 | No BCR | NA | GSM8540659 |
BCR_015 | 60 | BCR | NA | GSM8540660 |
BCR_016 | 65 | No BCR | GSM8531350 | GSM8540661 |
BCR_017 | 66 | No BCR | GSM8531351 | GSM8540662 |
Sample ID | Number of Probes with p-Value < 0.05 | % of Probes with p-Value < 0.05 | Number of Probes with p-Value < 0.01 | % of Probes with p-Value < 0.01 |
---|---|---|---|---|
BCR_001 | 910,418 | 97.16 | 898,417 | 95.88 |
BCR_007 | 903,035 | 96.38 | 888,659 | 94.84 |
BCR_009 | 919,663 | 98.15 | 909,262 | 97.04 |
BCR_010a | 911,268 | 97.25 | 896,384 | 95.67 |
BCR_010b | 916,872 | 97.85 | 906,083 | 96.70 |
BCR_011 | 900,177 | 96.07 | 881,760 | 94.11 |
BCR_013a | 913,887 | 97.53 | 900,104 | 96.06 |
BCR_013b | 901,864 | 96.25 | 881,472 | 94.07 |
BCR_014 | 871,424 | 93.00 | 838,822 | 89.52 |
BCR_016 | 884,775 | 94.43 | 856,269 | 91.39 |
BCR_017 | 922,079 | 98.41 | 912,121 | 97.35 |
Sample Name | DV200 (%) | Total Number of Sequenced Reads | Total Number of Uniquely Mapped Reads (GRCh37) | Uniquely Mapped Reads (%) | Percentage of Reads Aligned to rRNA Regions (%) | Protein Coding | lncRNA | Other ncRNAs | Pseudogene |
---|---|---|---|---|---|---|---|---|---|
BCR_001 | 30.26 | 62,430,362 | 13,035,862 | 22.08 | 1.37 | 15,136 | 4009 | 756 | 2140 |
BCR_002 | 32.33 | 62,832,795 | 6,195,164 | 10.46 | 1.93 | 14,392 | 3346 | 596 | 1704 |
BCR_003 | 28.97 | 65,013,859 | 33,894,073 | 54.80 | 4.34 | 15,557 | 4500 | 865 | 2456 |
BCR_004 | 33.46 | 65,225,499 | 6,582,178 | 10.62 | 0.98 | 14,312 | 3323 | 592 | 1655 |
BCR_005 | 32.43 | 64,227,638 | 4,040,770 | 6.71 | 10.61 | 7267 | 592 | 112 | 241 |
BCR_006 | 45.41 | 67,558,343 | 27,575,146 | 42.42 | 3.75 | 15,516 | 4435 | 838 | 2401 |
BCR_007 | 41.10 | 44,217,223 | 11,081,655 | 28.30 | 2.31 | 14,720 | 3601 | 647 | 1834 |
BCR_008 | 36.18 | 69,633,475 | 21,217,805 | 32.08 | 1.42 | 15,367 | 4343 | 815 | 2320 |
BCR_009 | 30.85 | 67,116,389 | 3,683,680 | 5.74 | 1.40 | 14,046 | 2616 | 451 | 1263 |
BCR_010 | 41.36 | 65,133,343 | 15,387,468 | 25.12 | 2.30 | 15,314 | 4203 | 791 | 2250 |
BCR_011 | 33.82 | 60,211,497 | 15,295,376 | 27.00 | 5.58 | 15,444 | 4284 | 776 | 2338 |
BCR_012 | 28.34 | 61,204,493 | 4,863,488 | 8.50 | 1.76 | 14,536 | 3323 | 547 | 1756 |
BCR_013 | 37.80 | 65,424,136 | 15,719,260 | 25.76 | 0.96 | 15,315 | 4249 | 799 | 2237 |
BCR_014a | 33.15 | 58,566,307 | 28,829,363 | 51.87 | 3.09 | 15,526 | 4465 | 851 | 2428 |
BCR_014b | 36.35 | 67,838,473 | 34,825,336 | 53.56 | 3.67 | 15,527 | 4473 | 853 | 2441 |
BCR_015 | 39.36 | 53,230,297 | 16,173,773 | 31.86 | 4.36 | 15,422 | 4344 | 810 | 2348 |
BCR_016 | 34.91 | 62,062,440 | 2,332,000 | 3.95 | 1.27 | 12,505 | 1998 | 292 | 861 |
BCR_017 | 36.18 | 59,508,497 | 24,420,208 | 43.19 | 5.60 | 15,521 | 4453 | 850 | 2416 |
No Recurrence (Control) (n = 8) | Biochemical Recurrence (n = 8) | Biochemical Persistence (n = 1) | |
---|---|---|---|
Demographics | |||
Age (Years) | 69 (66.4–71.7) | 63 (58.3–67.8) | 59 |
Ethnicity | |||
NZ European | 8 (100%) | 5 (62.5%) | NZ European |
Other European | 0 (0%) | 3 (37.5%) | --- |
Family History | 3 (37.5%) | 4 (50.0%) | Yes |
Diagnostic Work-Up | |||
PSA (ng/mL) | 5.7 (3.0–8.4) | 8.4 (5.7–11.2) | 16 |
PSA Density (ng/mL2) | 0.15 (0.12–0.18) | 0.18 (0.12–0.25) | 0.51 |
Abnormal DRE | 3 (37.5%) | 4 (50.0%) | No |
Prostate Biopsy | |||
Previous Biopsy | 3 (37.5%) | 2 (25.0%) | No |
ISUP Grade Group | ISUP Grade 2 | ||
1 | 0 (0%) | 2 (25.0%) | --- |
2 | 6 (75.0%) | 1 (11.1%) | --- |
3 | 2 (25.0%) | 5 (62.5%) | --- |
4 | 0 (0%) | 1 (12.5%) | --- |
5 | 0 (0%) | 0 (0%) | --- |
Bilateral Involvement | 5 (62.5%) | 7 (87.5%) | Bilateral |
Biopsy Cores Involved (%) | 27 (17–38) | 43 (34–52) | 42 |
Biopsy Tissue Involved (%) | 6.3 (3.5–9.1) | 15 (9.0–21.0) | 5 |
Radical Prostatectomy | |||
Time to Prostatectomy (Days) | 130 (105–156) | 100 (83–118) | 110 |
ISUP Grade Group | |||
1 | 1 (12.5%) | 0 (0%) | --- |
2 | 4 (50.0%) | 6 (75.0%) | --- |
3 | 2 (25.0%) | 1 (12.5%) | ISUP Grade 3 |
4 | 0 (0%) | 0 (0%) | --- |
5 | 1 (12.5%) | 1 (12.5%) | --- |
Positive Surgical Margin | 0 (0%) | 1 (12.5%) | No |
Extracapsular Extension | 1 (12.5%) | 3 (37.5%) | No |
Seminal Vesicle Invasion | 0 (0%) | 1 (12.5%) | No |
Lymphovascular Invasion | 1 (12.5%) | 1 (12.5%) | No |
Disease Recurrence | |||
PSA Doubling Time (Months) | --- | 5.8 (5.1–6.5) | 3.1 |
Time to BCR (Years) | --- | 2.2 (1.8–2.6) | --- |
Disease Progression | |||
Local Recurrence | --- | 3 (37.5%) | No |
Nodal Metastasis | --- | 3 (37.5%) | No |
Distant Metastasis | --- | 2 (25.0%) | No |
Salvage Therapy | --- | 5 (62.5%) | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, J.; Ajithkumar, P.; Wilkinson, E.J.; Dutta, A.; Vasantharajan, S.S.; Yee, A.; Gimenez, G.; Subramaniam, R.M.; Lau, M.; Zarrabi, A.D.; et al. Genome-Scale DNA Methylome and Transcriptome Profiles of Prostate Cancer Recurrence After Prostatectomy. Data 2024, 9, 150. https://doi.org/10.3390/data9120150
Smith J, Ajithkumar P, Wilkinson EJ, Dutta A, Vasantharajan SS, Yee A, Gimenez G, Subramaniam RM, Lau M, Zarrabi AD, et al. Genome-Scale DNA Methylome and Transcriptome Profiles of Prostate Cancer Recurrence After Prostatectomy. Data. 2024; 9(12):150. https://doi.org/10.3390/data9120150
Chicago/Turabian StyleSmith, Jim, Priyadarshana Ajithkumar, Emma J. Wilkinson, Atreyi Dutta, Sai Shyam Vasantharajan, Angela Yee, Gregory Gimenez, Rathan M. Subramaniam, Michael Lau, Amir D. Zarrabi, and et al. 2024. "Genome-Scale DNA Methylome and Transcriptome Profiles of Prostate Cancer Recurrence After Prostatectomy" Data 9, no. 12: 150. https://doi.org/10.3390/data9120150
APA StyleSmith, J., Ajithkumar, P., Wilkinson, E. J., Dutta, A., Vasantharajan, S. S., Yee, A., Gimenez, G., Subramaniam, R. M., Lau, M., Zarrabi, A. D., Rodger, E. J., & Chatterjee, A. (2024). Genome-Scale DNA Methylome and Transcriptome Profiles of Prostate Cancer Recurrence After Prostatectomy. Data, 9(12), 150. https://doi.org/10.3390/data9120150