Draft Genome Sequencing of the Bacillus thuringiensis var. Thuringiensis Highly Insecticidal Strain 800/15
Abstract
:1. Summary
2. Data Description
2.1. Isolation and Morphology Characterization of Bt Strain 800/15
2.2. Entomocidal, Fungicidal, and Plant Growth-Promoting Properties of Bt Strain 800/15
2.3. Genome Assembly and Annotation
2.4. Comparative Genomic Analysis
3. Methods
3.1. DNA Extraction and Whole Genome Sequencing
3.2. De Novo Genome Assembly and Annotation
3.3. Comparative Genomic Analysis of Closest Reference Strains
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, P.A.W.; Travers, R.S. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates. Appl. Environ. Microbiol. 1989, 55, 2437–2442. [Google Scholar] [CrossRef]
- Raymond, B.; Johnston, P.R.; Nielsen-LeRoux, C.; Lereclus, D.; Crickmore, N. Bacillus thuringiensis: An Impotent Pathogen? Trends Microbiol. 2010, 18, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Belousova, M.E.; Malovichko, Y.V.; Shikov, A.E.; Nizhnikov, A.A.; Antonets, K.S. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins 2021, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect Pathogens as Biological Control Agents: Back to the Future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Tikhonovich, I.; Romanova, T.; Ermolova, V.; Grishechkina, S. Bacterial Strain Bacillus thuringiensis Var. Thuringiensis N800/15 as Agent for Preparation Entomocidal Biopreparation. RU Patent 2514211 C1, 27 April 2014. [Google Scholar]
- Grishechkina, S.D.; Ermolova, V.P.; Kovalenko, T.K.; Antonets, K.S.; Belousova, M.E.; Yakhno, V.V.; Nizhnikov, A.A. Polyfunctional Properties of the Bacillus thuringiensis Var. thuringiensis Industrial Strain 800/15. Agric. Biol. 2019, 54, 494–504. [Google Scholar] [CrossRef]
- Stewart, G.S.; Johnstone, K.; Hagelberg, E.; Ellar, D.J. Commitment of Bacterial Spores to Germinate a Measure of the Trigger Reaction. Biochem. J. 1981, 198, 101–106. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Carroll, L.M.; Cheng, R.A.; Kovac, J. No Assembly Required: Using BTyper3 to Assess the Congruency of a Proposed Taxonomic Framework for the Bacillus cereus Group with Historical Typing Methods. Front. Microbiol. 2020, 11, 580691. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020, 11, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, J.; Bo, D.; Yu, Y.; Ye, W.; Peng, D.; Sun, M. BtToxin_Digger: A Comprehensive and High-Throughput Pipeline for Mining Toxin Protein Genes from Bacillus thuringiensis. Bioinformatics 2021, 38, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, S.; Mishra, R.; Berry, C.; Crickmore, N.; Bonning, B.C. BPPRC Database: A Web-Based Tool to Access and Analyse Bacterial Pesticidal Proteins. Database 2022, 2022, baac022. [Google Scholar] [CrossRef]
- Hannigan, G.D.; Prihoda, D.; Palicka, A.; Soukup, J.; Klempir, O.; Rampula, L.; Durcak, J.; Wurst, M.; Kotowski, J.; Chang, D.; et al. A Deep Learning Genome-Mining Strategy for Biosynthetic Gene Cluster Prediction. Nucleic Acids Res. 2019, 47, e110. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. AntiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Lereclus, D.; Arantès, O.; Chaufaux, J.; Lecadet, M.-M. Transformation and Expression of a Cloned δ-Endotoxin Gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 1989, 60, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.; Clark, K.; Gevorgyan, R.; Gorelenkov, V.; Gribov, E.; Karsch-Mizrachi, I.; Kimelman, M.; Pruitt, K.D.; Resenchuk, S.; Tatusova, T.; et al. BioProject and BioSample Databases at NCBI: Facilitating Capture and Organization of Metadata. Nucleic Acids Res. 2012, 40, D57–D63. [Google Scholar] [CrossRef]
- Togawa, R.; Martins, É.; Queiroz, P.; Grynberg, P.; Monnerat, R. Draft Genome Sequence of Bacillus thuringiensis Strain S1307, an Isolate Toxic for Lepidoptera. Braz. Appl. Sci. Rev. 2022, 6, 942–946. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Shikov, A.E.; Malovichko, Y.V.; Lobov, A.A.; Belousova, M.E.; Nizhnikov, A.A.; Antonets, K.S. The Distribution of Several Genomic Virulence Determinants Does Not Corroborate the Established Serotyping Classification of Bacillus thuringiensis. Int. J. Mol. Sci. 2021, 22, 2244. [Google Scholar] [CrossRef]
- Shikov, A.E.; Merkushova, A.V.; Savina, I.A.; Nizhnikov, A.A.; Antonets, K.S. The Man, the Plant, and the Insect: Shooting Host Specificity Determinants in Serratia marcescens Pangenome. Front. Microbiol. 2023, 14, 1211999. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Fu, Q.; Zhang, J.; Oppert, B.; Lai, F.; Peng, Y.; Zhang, Z. Screen of Bacillus thuringiensis Toxins for Transgenic Rice to Control Sesamia inferens and Chilo suppressalis. J. Invertebr. Pathol. 2010, 105, 11–15. [Google Scholar] [CrossRef]
- Alexa, A.; Rahnenfuhrer, J. TopGO: Enrichment Analysis for Gene Ontology. R Package Version 2.48.0 2022; Bioconductor: Boston, MA, USA, 2022. [Google Scholar]
- Méric, G.; Mageiros, L.; Pascoe, B.; Woodcock, D.J.; Mourkas, E.; Lamble, S.; Bowden, R.; Jolley, K.A.; Raymond, B.; Sheppard, S.K. Lineage-Specific Plasmid Acquisition and the Evolution of Specialized Pathogens in Bacillus thuringiensis and the Bacillus cereus Group. Mol. Ecol. 2018, 27, 1524–1540. [Google Scholar] [CrossRef] [PubMed]
- Lereclus, D.; Agaisse, H.; Grandvalet, C.; Salamitou, S.; Gominet, M. Regulation of Toxin and Virulence Gene Transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 2000, 290, 295–299. [Google Scholar] [CrossRef]
- Deng, C.; Peng, Q.; Song, F.; Lereclus, D. Regulation of Cry Gene Expression in Bacillus thuringiensis. Toxins 2014, 6, 2194–2209. [Google Scholar] [CrossRef]
- Peña, G.; Miranda-Rios, J.; de la Riva, G.; Pardo-López, L.; Soberón, M.; Bravo, A. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna Varivestis (Coleoptera: Coccinellidae). Appl. Environ. Microbiol. 2006, 72, 353–360. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Beecher, D.J.; Gominet, M.; Lereclus, D.; Wong, A.C.L.; Senesi, S. Requirement of FlhA for Swarming Differentiation, Flagellin Export, and Secretion of Virulence-Associated Proteins in Bacillus thuringiensis. J. Bacteriol. 2002, 184, 6424–6433. [Google Scholar] [CrossRef]
- Akao, T.; Mizuki, E.; Yamashita, S.; Saitoh, H.; Ohba, M. Lectin Activity of Bacillus thuringiensis Parasporal Inclusion Proteins. FEMS Microbiol. Lett. 1999, 179, 415–421. [Google Scholar] [CrossRef]
- Martínez-Zavala, S.A.; Barboza-Pérez, U.E.; Hernández-Guzmán, G.; Bideshi, D.K.; Barboza-Corona, J.E. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Front. Microbiol. 2020, 10, 3032. [Google Scholar] [CrossRef] [PubMed]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin—A Novel Antifungal Lipopeptide Antibiotic Produced by Bacillus subtilis F-29-3. J. Antibiot. 1986, 39, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, A.; Theologidis, I.; Benaki, D.; Koukounia, M.; Zervakou, A.; Tzima, A.; Diallinas, G.; Hatzinikolaou, D.G.; Skandalis, N. Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. mSphere 2021, 6, e0037621. [Google Scholar] [CrossRef] [PubMed]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial Siderophores and Their Potential Applications: A Review. Environ. Sci. Pollut. Res. 2016, 23, 3984–3999. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, M.N.; Nesterenko, M.A.; Shikov, A.E.; Nizhnikov, A.A.; Antonets, K.S. Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties. Data 2023, 8, 167. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 November 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Shikov, A.E.; Malovichko, Y.V.; Skitchenko, R.K.; Nizhnikov, A.A.; Antonets, K.S. No More Tears: Mining Sequencing Data for Novel Bt Cry Toxins with CryProcessor. Toxins 2020, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [PubMed]
- Shipunov, A. Shipunov: Miscellaneous Functions from Alexey Shipunov. Available online: https://cran.r-project.org/web/packages/shipunov/index.html (accessed on 11 November 2023).
- Steinegger, M.; Söding, J. MMseqs2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Imanian, B. PlasmidHunter: Accurate and Fast Prediction of Plasmid Sequences using Gene Content Profile and Machine Learning. bioRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Bland, C.; Ramsey, T.L.; Sabree, F.; Lowe, M.; Brown, K.; Kyrpides, N.C.; Hugenholtz, P. CRISPR Recognition Tool (CRT): A Tool for Automatic Detection of Clustered Regularly Interspaced Palindromic Repeats. BMC Bioinform. 2007, 8, 209. [Google Scholar] [CrossRef]
- Bertelli, C.; Brinkman, F.S.L. Improved Genomic Island Predictions with IslandPath-DIMOB. Bioinformatics 2018, 34, 2161–2167. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef]
- Starikova, E.V.; Tikhonova, P.O.; Prianichnikov, N.A.; Rands, C.M.; Zdobnov, E.M.; Ilina, E.N.; Govorun, V.M. Phigaro: High-Throughput Prophage Sequence Annotation. Bioinformatics 2020, 36, 3882–3884. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; von Mering, C.; Bork, P. Fast Genome-Wide Functional Annotation through Orthology Assignment by EggNOG-Mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
Genome Characteristics | Value |
---|---|
Genome coverage | 773 |
Total amount of contigs | 423 |
Total length (b.p.) | 6,524,663 |
Largest contig (b.p.) | 776,444 |
GC-content (%) | 34.84 |
N50 value | 159,667 |
L50 value | 11 |
Assembly completeness (%) | 99.34 |
Suspected contamination (%) | 0.15 |
Database | Bacillales_odb10 | Bacilli_odb10 |
---|---|---|
Single-copy orthologues assembled completely | 448 (99.5%) | 301 (99.7%) |
Orthologues present in one copy | 443 (98.4%) | 299 (99.0%) |
Multi-copies orthologues | 5 (1.1%) | 2 (0.7%) |
Fragmented sequences | 0 (0.0%) | 0 (0.0%) |
Orthologues missing from the assembly | 2 (0.5%) | 1 (0.3%) |
Total number of single-copy orthologues in the database | 450 | 302 |
NCBI RefSeq Assembly | Strain | ANI | Btyper3 Taxonomy |
---|---|---|---|
GCF_033071735.1 | S908 | 99.8215 | B. cereus s.s.biovar Thuringiensis |
GCF_031337245.1 | S1307 | 99.8465 | B. cereus s.s.biovar Thuringiensis |
GCF_017165575.1 | S601 | 99.8275 | B. cereus s.s.biovar Thuringiensis |
GCF_002912115.1 | Bt407 | 99.9022 | B. cereus s.s. |
GCF_002574115.1 | AFS057829 | 99.8302 | B. cereus s.s.biovar Thuringiensis |
GCF_000341665.1 | IS5056 | 99.8639 | B. cereus s.s.biovar Thuringiensis |
GCF_000306745.1 | 407 | 99.9176 | B. cereus s.s. |
GCF_000193355.1 | CT-43 | 99.8311 | B. cereus s.s.biovar Thuringiensis |
GCF_000161495.1 | Bt407 | 99.8506 | B. cereus s.s. |
GCF_000571955.1 | NA205-3 | 99.8317 | B. cereus s.s.biovar Thuringiensis |
Toxin | Percent of Identity | Target Order | Target Species |
---|---|---|---|
Spp1Aa1 | 80.3 | Lepidoptera | Spodoptera litura |
Blattodea | Blattella germanica | ||
Cry1Ab9 | 100 | Lepidoptera | Anticarsia gemmatalis, Chilo partellus, Choristoneura fumiferana, Chrysodeixis includens, Conogethes punctiferalis, Ephestia kuehniella, Epinotia aporema, Helicoverpa armigera, Lymantria dispar, Mythimna separata, Ostrinia nubilalis, Pectinophora gossypiella, Plodia interpunctella, Plutella xylostella, Sesamia inferens, Spodoptera exigua, Spodoptera frugiperda |
Hemiptera | Acyrthosiphon pisum, Diaphorina citri, Nilaparvata lugens | ||
Cry1Ba8 | 100 | Lepidoptera | Chilo suppressalis, Spodoptera frugiperda, Epinotia |
Hemiptera | Diaphornia citri | ||
Diptera | Musca domestica | ||
Coleoptera | Xylotrechus arvicola, Chrysomela scripta, Acanthoscelides obtectus |
Contig | Tool | Type/Activity | Location (Relative Coordinate, b.p.) | Most Similar Known Cluster | Similarity | Score |
---|---|---|---|---|---|---|
4 | antiSMASH | Siderophore | 55,618-69,325 (13,708) | Petrobactin | 100% | - |
8 | antiSMASH | NRPS-like | 95,304-138,885 (43,582) | - | - | - |
11 | antiSMASH | NRPS | 49,700-96,857 (47,158) | Bacillibactin | 46% | - |
23 | antiSMASH | Terpene | 19,851-41,704 (21,854) | Molybdenum Cofactor | 17% | - |
26 | antiSMASH | RiPP-like | 5610-15,876 (10,267) | - | - | - |
35 | antiSMASH | RRE-containing | 18,991-40,094 (21,104) | - | - | - |
42 | antiSMASH | Betalactone | 1-16,063 (16,063) | Fengycin | 40% | - |
6 | antiSMASH/DeepBGC | LAP, RiPP-like | 90,297-113,803 (23,507) | - | - | 0.80372 |
17 | antiSMASH/DeepBGC | NRPS/antibacterial | 57,052-104,062 (47,011) | - | - | 0.77436 |
19 | antiSMASH/DeepBGC | NRPS/antibacterial | 21,439-87,344 (65,906) | - | - | 0.93123 |
32 | antiSMASH/DeepBGC | RiPP-like/antibacterial | 6249-16,578 (10,330) | - | - | 0.88864 |
49 | antiSMASH/DeepBGC | NRPS/antibacterial | 1-19,638 (19,638) | - | - | 0.71362 |
1 | DeepBGC | antibacterial | 547,383-563,304 (15921) | - | - | 0.88938 |
2 | DeepBGC | Saccharide/antibacterial | 181,696-199,535 (17839) | - | - | 0.81677 |
5 | DeepBGC | Saccharide/antibacterial | 16,626-34,094 (17468) | - | - | 0.90965 |
8 | DeepBGC | Saccharide/antibacterial | 181,609-198,845 (17236) | - | - | 0.91004 |
26 | DeepBGC | antibacterial | 64,334-77,440 (13106) | - | - | 0.89632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikov, A.E.; Savina, I.A.; Romanenko, M.N.; Nizhnikov, A.A.; Antonets, K.S. Draft Genome Sequencing of the Bacillus thuringiensis var. Thuringiensis Highly Insecticidal Strain 800/15. Data 2024, 9, 34. https://doi.org/10.3390/data9020034
Shikov AE, Savina IA, Romanenko MN, Nizhnikov AA, Antonets KS. Draft Genome Sequencing of the Bacillus thuringiensis var. Thuringiensis Highly Insecticidal Strain 800/15. Data. 2024; 9(2):34. https://doi.org/10.3390/data9020034
Chicago/Turabian StyleShikov, Anton E., Iuliia A. Savina, Maria N. Romanenko, Anton A. Nizhnikov, and Kirill S. Antonets. 2024. "Draft Genome Sequencing of the Bacillus thuringiensis var. Thuringiensis Highly Insecticidal Strain 800/15" Data 9, no. 2: 34. https://doi.org/10.3390/data9020034
APA StyleShikov, A. E., Savina, I. A., Romanenko, M. N., Nizhnikov, A. A., & Antonets, K. S. (2024). Draft Genome Sequencing of the Bacillus thuringiensis var. Thuringiensis Highly Insecticidal Strain 800/15. Data, 9(2), 34. https://doi.org/10.3390/data9020034