Literature-Based Inventory of Chemical Substance Concentrations Measured in Organic Food Consumed in Europe
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Identification of Articles of Interest
2.2. Study Selection and Eligibility Criteria
2.3. Data Extraction
2.4. Data Analysis
2.4.1. Food Matrices and Chemical Substance Classifications
2.4.2. The Scientific Interest
2.4.3. Data Processing and Analysis
3. Results and Discussion
3.1. Identification of Concentration Values of Chemical Substances in Organic Food
3.2. Descriptive Analysis of the Database
3.2.1. Description of the Database Table
3.2.2. Description of Food Matrices
3.2.3. Description of Chemical Substances
3.2.4. Description of Couples (Matrix, Chemical Substance)
3.2.5. Description of Database by FoodEx Groups
3.2.6. Description of Substance Group per FoodEx Group
3.3. Summary
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ANSES. Intégration de l’exposome Dans Les Travaux de l’Anses. Avis de l’Anses. In Rapport Du Conseil Scientifique; ANSES: Maison Alfort, France, 2023. [Google Scholar]
- Miller, G.W.; Jones, D.P. The Nature of Nurture: Refining the Definition of the Exposome. Toxicol. Sci. 2014, 137, 1–2. [Google Scholar] [CrossRef]
- Rappaport, S.M. Implications of the Exposome for Exposure Science. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 5–9. [Google Scholar] [CrossRef]
- Vermeulen, R.; Schymanski, E.L.; Barabási, A.-L.; Miller, G.W. The Exposome and Health: Where Chemistry Meets Biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; Alldrick, A.; Arsi, K.; Asam, S.; Benford, D.J.; Berntssen, M.H.G.; Cartus, A.; Chopra, M.; Cramer, B.; Croubels, S.; et al. Chemical Contaminants and Residues in Food. In Chemical Contaminants and Residues in Food, 2nd ed.; Schrenk, D., Cartus, A., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2018; pp. ix–x. ISBN 978-0-08-100674-0. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Turinek, M.; Grobelnik-Mlakar, S.; Bavec, M.; Bavec, F. Biodynamic Agriculture Research Progress and Priorities. Renew. Agric. Food Syst. 2009, 24, 146–154. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Eurostat Developments in Organic Farming. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Developments_in_organic_farming (accessed on 9 August 2023).
- Willer, H.; Trávníček, J.; Schlatter, B. The World of Organic Agriculture—Statistics and Emerging Trends 2024; Research Institute of Organic Agriculture FiBL, Frick, and IFOAM—Organics International: Bonn, Switzerland, 2024. [Google Scholar]
- Radley-Gardner, O.; Beale, H.; Zimmermann, R. (Eds.) European Parliament and Council REGULATION (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; Hart Publishing: Oxford, UK, 2018; ISBN 978-1-78225-864-3. [Google Scholar]
- Debnath, M.; Vijaya, B.K.; Jain, R. Comparative Analysis of Organic and Conventionally Grown Food from Indian Market. Curr. Nutr. Food Sci. 2015, 11, 213–222. [Google Scholar] [CrossRef]
- Malmauret, L.; Parent-Massin, D.; Hardy, J.-L.; Verger, P. Contaminants in Organic and Conventional Foodstuffs in France. Food Addit. Contam. 2002, 19, 524–532. [Google Scholar] [CrossRef]
- Almeida-González, M.; Luzardo, O.P.; Zumbado, M.; Rodríguez-Hernández, Á.; Ruiz-Suárez, N.; Sangil, M.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D. Levels of Organochlorine Contaminants in Organic and Conventional Cheeses and Their Impact on the Health of Consumers: An Independent Study in the Canary Islands (Spain). Food Chem. Toxicol. 2012, 50, 4325–4332. [Google Scholar] [CrossRef]
- Dervilly-Pinel, G.; Guérin, T.; Minvielle, B.; Travel, A.; Normand, J.; Bourin, M.; Royer, E.; Dubreil, E.; Mompelat, S.; Hommet, F.; et al. Micropollutants and Chemical Residues in Organic and Conventional Meat. Food Chem. 2017, 232, 218–228. [Google Scholar] [CrossRef]
- Witczak, A.; Abdel-Gawad, H. Comparison of Organochlorine Pesticides and Polychlorinated Biphenyls Residues in Vegetables, Grain and Soil from Organic and Conventional Farming in Poland. J. Environ. Sci. Health Part B 2012, 47, 343–354. [Google Scholar] [CrossRef]
- Hoefkens, C.; Vandekinderen, I.; De Meulenaer, B.; Devlieghere, F.; Baert, K.; Sioen, I.; De Henauw, S.; Verbeke, W.; Van Camp, J. A Literature-based Comparison of Nutrient and Contaminant Contents between Organic and Conventional Vegetables and Potatoes. Br. Food J. 2009, 111, 1078–1097. [Google Scholar] [CrossRef]
- Mao, X.; Xiao, W.; Wan, Y.; Li, Z.; Luo, D.; Yang, H. Dispersive Solid-Phase Extraction Using Microporous Metal-Organic Framework UiO-66: Improving the Matrix Compounds Removal for Assaying Pesticide Residues in Organic and Conventional Vegetables. Food Chem. 2021, 345, 128807. [Google Scholar] [CrossRef]
- Romero-González, R.; Garrido Frenich, A.; Martínez Vidal, J.L.; Prestes, O.D.; Grio, S.L. Simultaneous Determination of Pesticides, Biopesticides and Mycotoxins in Organic Products Applying a Quick, Easy, Cheap, Effective, Rugged and Safe Extraction Procedure and Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 1477–1485. [Google Scholar] [CrossRef]
- Oates, L.; Cohen, M.; Braun, L.; Schembri, A.; Taskova, R. Reduction in Urinary Organophosphate Pesticide Metabolites in Adults after a Week-Long Organic Diet. Environ. Res. 2014, 132, 105–111. [Google Scholar] [CrossRef]
- Curl, C.L.; Fenske, R.A.; Elgethun, K. Organophosphorus Pesticide Exposure of Urban and Suburban Preschool Children with Organic and Conventional Diets. Environ. Health Perspect. 2003, 111, 377–382. [Google Scholar] [CrossRef]
- Lu, C.; Barr, D.B.; Pearson, M.A.; Waller, L.A. Dietary Intake and Its Contribution to Longitudinal Organophosphorus Pesticide Exposure in Urban/Suburban Children. Environ. Health Perspect. 2008, 116, 537–542. [Google Scholar] [CrossRef]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic Diets Significantly Lower Children’s Dietary Exposure to Organophosphorus Pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef]
- EFSA; FAO. WHO Towards a Harmonised Total Diet Study Approach: A Guidance Document. EFSA J. 2011, 9, 2450. [Google Scholar] [CrossRef]
- EFSA. The 2020 European Union Report on Pesticide Residues in Food. EFSA J. 2022, 20, 7215. [Google Scholar] [CrossRef]
- CVUA. Stuttgart Report on the Organic Monitoring Program of Baden-Württemberg. Available online: https://www.cvuas.de/pesticides/beitrag_en.asp?ID=2897&subid=1&Thema_ID=5&lang=EN (accessed on 10 August 2023).
- ANSES. Avis de l’Agence Nationale 21 Juin 2011 de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail: Étude de l’Alimentation Totale Française 2 (EAT 2); Saisine no 2006-SA-0361; ANSES: Maison Alfort, France, 2011. [Google Scholar]
- European Food Safety Authority. The Food Classification and Description System FoodEx 2 (Revision 2). EFSA Support. Publ. 2015, 12, 804E. [Google Scholar] [CrossRef]
- University of Hertfordshire PPDB A to Z Index. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm (accessed on 16 October 2023).
- Rieutort, D.; Moyne, O.; Cocco, P.; de Gaudemaris, R.; Bicout, D.J. Ranking Occupational Contexts Associated with Risk of Non-Hodgkin Lymphoma. Am. J. Ind. Med. 2016, 59, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, J.; Bicout, D.; Demeilliers, C. Pollutants in Organic Foods Consumed in Europe—POFE. 2023, V1. [CrossRef]
- Mandy, M.; Nyirenda, M. Developmental Origins of Health and Disease: The Relevance to Developing Nations. Int. Health 2018, 10, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Le Douarin, S. Organic Sector in the European Union; French Agency for the Development and Promotion of Organic Farming (Agence BIO): Montreuil, France, 2021. [Google Scholar]
- Abis, S. Géopolitique du Blé Européen; Question D’europe N°669/15 SCHUMAN PAPER N°731; Fondation Robert Schuman: Paris, France, 2024; ISSN 2402-614X. [Google Scholar]
- Mossa, A.-T.H.; Mohafrash, S.M.M.; Chandrasekaran, N. Safety of Natural Insecticides: Toxic Effects on Experimental Animals. BioMed Res. Int. 2018, 2018, 4308054. [Google Scholar] [CrossRef]
- WHO. Preventing Disease through Healthy Environments. In Exposure to Cadmium: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. Preventing Disease through Healthy Environments. In Exposure to Lead: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- ANSES. Étude de l’Alimentation Totale Française 2 (EAT 2) TOME 1. Available online: https://www.anses.fr/fr/system/files/PASER2006sa0361Ra1.pdf (accessed on 13 September 2023).
- FSA. Measurement of the Concentrations of Metals and Other Elements from the 2014 UK Total Diet Study; Food Standards Agency: London, UK, 2014. [Google Scholar]
- ANSES. Étude de l’alimentation Totale Française 2 (EAT 2) Tome 2 Résidus de Pesticides, Additifs, Acrylamide, Hydrocarbures Aromatiques Polycycliques. Available online: https://www.anses.fr/fr/system/files/PASER2006sa0361Ra2.pdf (accessed on 20 September 2023).
- Giannioti, Z.; Albero, B.; Hernando, M.D.; Bontempo, L.; Pérez, R.A. Determination of Regulated and Emerging Mycotoxins in Organic and Conventional Gluten-Free Flours by LC-MS/MS. Toxins 2023, 15, 155. [Google Scholar] [CrossRef]
Countries of Origin | Country of Origin of the Corresponding Matrix |
---|---|
COO by continents | Continent in which the country of origin is |
FX_L2 | The foodEx2 group from level 2 nomenclature to which belongs the matrix |
Code_FX | The code of the foodEx2 group |
Food matrices | The food item |
Chemical substances | The chemical substance detected |
Substance groups | The chemical family group of the substance |
General groups | The largest category to which belong this chemical substance |
Complementary information | The use (for pesticides) or details on the chemical substance |
Couple frequency | The number of times the couple (matrix, chemical substance) occurs in the database |
Number of samples tested | The number of samples tested of this food matrix |
Number of positive samples | The number of samples in which chemical substances were detected |
Concentrations | The concentration value |
Measurement units | The unit of the concentration value |
SD | The standard deviation of the concentration value |
Min | The minimum concentration value when values are expressed in ranges |
Max | The maximum concentration value when values are expressed in ranges |
LOD | The limit of detection |
LOQ | The limit of quantification |
LOD/LOD units | The unit of the LOD and/or LOQ values |
Measurement types | The type of measurement: mean, median, range, single value, or ND when undetermined |
Chemical types | The type of chemical: residue (authorized substance in organic food), contaminant (non-authorized substance in organic food or environmental pollution) |
References | Data source |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choueiri, J.; Petit, P.; Balducci, F.; Bicout, D.J.; Demeilliers, C. Literature-Based Inventory of Chemical Substance Concentrations Measured in Organic Food Consumed in Europe. Data 2024, 9, 89. https://doi.org/10.3390/data9070089
Choueiri J, Petit P, Balducci F, Bicout DJ, Demeilliers C. Literature-Based Inventory of Chemical Substance Concentrations Measured in Organic Food Consumed in Europe. Data. 2024; 9(7):89. https://doi.org/10.3390/data9070089
Chicago/Turabian StyleChoueiri, Joanna, Pascal Petit, Franck Balducci, Dominique J. Bicout, and Christine Demeilliers. 2024. "Literature-Based Inventory of Chemical Substance Concentrations Measured in Organic Food Consumed in Europe" Data 9, no. 7: 89. https://doi.org/10.3390/data9070089
APA StyleChoueiri, J., Petit, P., Balducci, F., Bicout, D. J., & Demeilliers, C. (2024). Literature-Based Inventory of Chemical Substance Concentrations Measured in Organic Food Consumed in Europe. Data, 9(7), 89. https://doi.org/10.3390/data9070089